Table 5 Substrate scope for C-4 arylationa
Eur. J. Med. Chem., 2011, 46, 2917; (d) L. Janovec, M. Kozurkova
D. Sabolova, J. Ungvarsky, H. Paulıkova, J. Plsıkova, Z. Vantova
and J. Imrich, Bioorg. Med. Chem., 2011, 19, 1790.
´
,
´
´
´
´
´
´
´
2 For example, see: (a) L. A. Howell, R. Gulam, A. Mueller,
M. A. O’Connell and M. Searcey, Bioorg. Med. Chem. Lett.,
2010, 20, 6956; (b) K. Zelenka, L. Borsig and R. Alberto, Biocon-
jugate Chem., 2011, 22, 958; (c) G. W. Collie, S. Sparapani,
G. N. Parkinson and S. Neidle, J. Am. Chem. Soc., 2011, 133, 2721.
3 J. Kwak, M. Kim and S. Chang, J. Am. Chem. Soc., 2011, 133, 3780.
4 Recent reviews on catalytic C–H functionalization of heteroarenes:
(a) G. P. McGlacken and L. M. Bateman, Chem. Soc. Rev., 2009,
38, 2447; (b) F. Bellina and R. Rossi, Tetrahedron, 2009, 65, 10269;
(c) L. Ackerman, R. Vicente and A. R. Kapdi, Angew. Chem., Int.
Ed., 2009, 48, 9792; (d) K. Hirano and M. Miura, Synlett, 2011,
294; (e) Y. Nakao, Synthesis, 2011, 3209.
5 Majority of catalytic functionalization of pyridines occurs at the
2-position. For selected examples, see: (a) R. F. Jordan and
D. F. Taylor, J. Am. Chem. Soc., 1989, 111, 778; (b) E. J. Moore,
W. R. Pretzer, T. J. O’Connell, J. Harris, L. LaBounty, L. Chou and
S. S. Grimmer, J. Am. Chem. Soc., 1992, 114, 5888; (c) M. Murakami
and S. Hori, J. Am. Chem. Soc., 2003, 125, 4720; (d) J. C. Lewis,
R. G. Bergman and J. A. Ellman, J. Am. Chem. Soc., 2007,
129, 5332; (e) A. M. Berman, J. C. Lewis, R. G. Bergman and
J. A. Ellman, J. Am. Chem. Soc., 2008, 130, 14926; (f) Y. Nakao,
K. S. Kanyiva and T. Hiyama, J. Am. Chem. Soc., 2008, 130, 2448;
(g) M. Tobisu, I. Hyodo and N. Chatani, J. Am. Chem. Soc., 2009,
131, 12070; (h) S. Yotphan, R. G. Bergman and J. A. Ellman, Org.
Lett., 2010, 12, 2978; (i) A. M. Berman, R. G. Bergman and
J. A. Ellman, J. Org. Chem., 2010, 75, 7863.
6 Catalytic C-3 or C-4 functionalization of pyridines without direct-
ing groups: (a) C.-C. Tsai, W.-C. Shih, C.-H. Fang, C.-Y. Li,
T.-G. Ong and G. P. A. Yap, J. Am. Chem. Soc., 2010, 132, 11887;
(b) Y. Nakao, Y. Yamada, N. Kashihara and T. Hiyama, J. Am.
Chem. Soc., 2010, 132, 13666; (c) B.-J. Li and Z.-J. Shi, Chem. Sci.,
2011, 2, 488; (d) M. Ye, G.-L. Gao and J.-Q. Yu, J. Am. Chem.
Soc., 2011, 133, 6964; with directing groups: (e) M. Wasa,
B. T. Worrell and J.-Q. Yu, Angew. Chem., Int. Ed., 2010,
49, 1275; (f) P. Guo, J. M. Joo, S. Rakshit and D. Sames, J. Am.
Chem. Soc., 2011, 133, 16338.
7 Radical and related arylation methods can be applied to pyridine
derivatives, although the regioselectivity is relatively low.
(a) S. Yanagisawa, K. Ueda, T. Taniguchi and K. Itami, Org. Lett.,
2008, 10, 4673; (b) O. Kobayashi, D. Uraguchi and T. Yamakawa,
Org. Lett., 2009, 11, 2679; (c) M. Li and R. Hua, Tetrahedron Lett.,
2009, 50, 1478; (d) J. Wen, S. Qin, L.-F. Ma, L. Dong, J. Zhang,
S.-S. Liu, Y.-S. Duan, S.-Y. Chen, C.-W. Hu and X.-Q. Yu, Org.
Lett., 2010, 12, 2694; (e) I. B. Seiple, S. Su, R. A. Rodriguez,
R. Gianatassio, Y. Fujiwara, A. L. Sobel and P. S. Baran, J. Am.
Chem. Soc., 2010, 132, 13194; (f) Y. Ji, T. Brueckl, R. D. Baxter,
Y. Fujiwara, I. B. Seiple, S. Su, D. G. Blackmond and P. S. Baran,
Proc. Natl. Acad. Sci. U. S. A., 2011, 108, 14411.
Entry
1
R
Yield (%) Entry
R
Yield (%)
55
68
55
6
7
2
3
55
64
63
8
4
5
59
55
9
52
52
10b
a
Reaction conditions: 9-substituted acridine (0.25 mmol), 2 (1.0 mmol),
Ni(cod)2 (0.050 mmol), SIPrꢀHCl (0.1 mmol), NaOtBu (0.5 mmol) and
toluene (2 mL) in a screw-capped vial under N2 at 160 1C for 20 h unless
b
otherwise noted. (2-Tolyl)2Zn prepared from (2-tolyl)MgBr and
Zn(OMe)2 was used.
untouched (entries 5 and 6), while nickel-catalyzed C–O bond
cleavage using organozinc reagents has been reported to occur.13
Similar to the C-9 arylation reaction, Ar2Zn prepared from
ArMgX and Zn(OMe)2 was found to participate in this nickel-
catalyzed C-4 arylation reaction (entry 10).
In summary, regioselective functionalizations of acridine
derivatives using organozinc reagents are described. With a
nickel based catalyst, the reaction proceeded at the 4-position,
whereas C-9-selective functionalization took place with a
rhodium catalyst. Moreover, the overall C-9 alkylation of
acridine can be accomplished by the non-catalytic addition
of a dialkylzinc/oxidation sequence. Straightforward synthesis
of acridine derivatives can be expected through the present
C–H bond functionalization protocols.
8 Addition of reactive nucleophiles, such as Grignard and organo-
lithium reagents, occurs at the C-9 position of acridines to afford
dihydroacridines: (a) B. Dutta, G. K. Kar and J. K. Ray, Tetrahedron
Lett., 2003, 44, 8641; (b) E. Hayashi, S. Ohsumi and T. Maeda,
Yakugaku Zasshi, 1959, 7, 969.
9 A. Cote and A. B. Charette, J. Am. Chem. Soc., 2008, 130, 2771.
10 The use of diarylzincs prepared by the reaction of ArMgX or ArLi
and ZnCl2 afforded only the traces of an arylated product,
probably due to the inhibiting effect of residual metal salts. ArZnX
was also ineffective.
11 Treatment of 5 with 2 equivalents of 2 at 130 1C for 20 h did not
promote an aromatization leading to 9-isopropylacridine (11). In
contrast, 9-phenyl-9,10-dihydroacridine could be aromatized to
afford 3 by the treatment with 2. From these results, the ease of
aromatization of the dearomatized intermediate by an organozinc
reagent is likely to determine the course of the reaction.
This work was supported by a Grant-in-Aid for Scientific
Research on Innovative Areas ‘‘Molecular Activation Directed
toward Straightforward Synthesis’’ from MEXT, Japan. We also
thank the Instrumental Analysis Center, Faculty of Engineering,
Osaka University, for assistance with the HRMS analyses.
M.T. acknowledges the Novartis Foundation (Japan) for the
Promotion of Science for their financial support. I.H. thanks the
GCOE Program of Osaka University and JSPS.
Notes and references
1 Selected recent biological studies of acridines: (a) X. Luan, C. Gao,
N. Zhang, Y. Chen, Q. Sun, C. Tan, H. Liu, Y. Jin and Y. Jiang,
Bioorg. Med. Chem., 2011, 19, 3312; (b) M. Tonelli, G. Vettoretti,
B. Tasso, F. Novelli, V. Boido, F. Sparatore, B. Busonera, A. Ouhtit,
P. Farci, S. Blois, G. Giliberti and P. La Colla, Antiviral Res., 2011,
91, 133; (c) T. Nguyen, Y. Sakasegawa, K. Doh-ura and M.-L. Go,
12 Under these conditions, 1 afforded 3 (10%), 4-phenylacridine
(18%) and 14 (15%).
13 B.-J. Li, Y.-Z. Li, X.-Y. Lu, J. Liu, B.-T. Guan and Z.-J. Shi,
Angew. Chem., Int. Ed., 2008, 47, 10124.
c
310 Chem. Commun., 2012, 48, 308–310
This journal is The Royal Society of Chemistry 2012