LETTER
Metal-Free Carbonyl–Olefin Metathesis of ortho-Prenylaryl Ketones
2489
Table 2 BF3-Induced Metathesis Cyclization of Substrates 13a–c
and 16 According to Scheme 6a
References and Notes
(1) For selected reviews, see: (a) Ivin, F. J. Olefin Metathesis;
Academic Press: London, 1983. (b) Schmalz, H.-G. Angew.
Chem. Int. Ed. 1995, 34, 1833. (c) Grubbs, R. H.; Miller,
S. J.; Fu, G. C. Acc. Chem. Res. 1995, 28, 446. (d) Grubbs,
R. H.; Chang, S. Tetrahedron 1998, 54, 4413. (e) Schuster,
M.; Blechert, S. Angew. Chem. Int. Ed. 1997, 36, 2036.
(f) Schrock, R. R. Tetrahedron 1999, 55, 8141.
Entry
Substrate
13a
Product
17
Yield (%)b
1
2
3
4
87
13b
17
tracesc
38
13c
17
(g) Fürstner, A. Angew. Chem. Int. Ed. 2000, 39, 3012.
(h) Schrock, R. R.; Hoveyda, A. H. Angew. Chem. Int. Ed.
2003, 42, 4592. (i) Deiters, A.; Martin, S. F. Chem. Rev.
2004, 104, 2199.
16
18
75
a Reaction conditions: 8a–8c and 12 (1 equiv), 0.05 M solution in
CH2Cl2, BF3×OEt2 (1.5 equiv), –40 °C, 1 h.
b Isolated yield.
(2) (a) Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34,
18. (b) Armstrong, S. K. J. Chem. Soc., Perkin Trans. 1
1998, 371. (c) Dragutan, I.; Dragutan, V.; Filip, P.
ARKIVOC 2005, (x), 105. (d) Wengrovius, H. J.; Sancho, J.;
Schrock, R. R. J. Am. Chem. Soc. 1981, 103, 3932.
(e) Grubbs, R. H. Handbook of Metathesis; Wiley-VCH:
Weinheim, .
c Detected by GC–MS.
ed substrate 16 smoothly gave rise to the dihydronaphtha-
lene 18 (entry 4).
(3) (a) Astruc, D. New J. Chem. 2005, 29, 42. (b) Basset, J.-M.;
While the ortho-geranyl acetophenone 13c could also be
successfully cyclized to give 17 (entry 3), the metal-free
RCM reaction did not occur with ortho-crotyl acetophe-
none (13b) as a substrate. Only traces of the RCM product
17 could be detected by GC–MS in this case besides unre-
acted starting material. This result can be understood in
terms of the proposed mechanism (compare Scheme 3). A
second alkyl substituent at the distal position of the olefin
6 seems to be required to sufficiently stabilize the initially
formed carbocation of type 8 (formation of a tertiary car-
benium ion).
Leconte, M. Chemtech 1980, 10, 762.
(4) (a) Herrison, J.-L.; Chauvin, Y. Makromol. Chem. 1970,
141, 161. (b) Katz, T. J.; McGinnis, J. J. Am. Chem. Soc.
1977, 99, 1903. (c) Leconte, M.; Basset, J. M.; Quignard, F.;
Larroche, C. Mechanistic Aspects of the Olefin Metathesis
Reaction, in Reactions of Coordinated Ligands, Vol. 1;
Braterman, P. S., Ed.; Plenum: New York, 1986, 371.
(5) (a) Pine, S. H.; Zahler, R.; Evans, D. A.; Grubbs, R. H. J. Am.
Chem. Soc. 1980, 102, 3270. (b) For a review, see: Grubbs,
R. H.; Pine, S. H. Comprehensive Organic Synthesis, Vol. 5;
Trost, B. M.; Fleming, I., Eds.; Pergamon Press: Oxford,
1991, 1115.
(6) (a) Fu, G. C.; Grubbs, R. H. J. Am. Chem. Soc. 1993, 115,
3800. (b) Nicolaou, K. C.; Postema, M. H. D.; Claiborne, C.
F. J. Am. Chem. Soc. 1996, 118, 1565. (c) Nicolaou, K. C.;
Postema, M. H. D.; Yue, E. W.; Nadin, A. J. Am. Chem. Soc.
1996, 118, 10335. (d) Majumder, U.; Rainier, J. D.
Tetrahedron Lett. 2005, 46, 7209. (e) Iyer, K.; Rainier, J. D.
J. Am. Chem. Soc. 2007, 129, 12604.
(7) Slavov, N.; Cvengros, J.; Neudörfl, J.-M.; Schmalz, H.-G.
Angew. Chem. Int. Ed. 2010, 49, 7588.
(8) Konieczny, M. T.; Maciejewski, G.; Konieczny, W.
Synthesis 2005, 1575.
To further support the proposed mechanism, we per-
formed an experiment (cyclization of 13a to 17) where we
trapped the expected by-product (acetone) by the addition
of ortho-nitrobenzaldehyde under basic conditions
(NaOH).16 The formation of indigo (as indicated by the
occurrence of a deep blue insoluble solid) clearly proved
the generation of acetone in accordance to the suggested
mechanism.
In conclusion, we have shown that the Lewis acid mediat-
ed ‘metal-free’ carbonyl–olefin ring-closing metathesis17
reflects a rather general reactivity option of ortho-prenyl-
aryl ketones, i.e. a frequently occurring substructure in
natural product chemistry. The surprisingly facile trans-
formation is supposed to proceed (like the transition-
metal-catalyzed olefin metathesis) via a four-membered-
ring intermediate.
(9) For a summary of data see: Cambridge Crystallographic
Data Centre; Deposit Number: CCDC-836866.
(10) (a) Jackson, A. C.; Goldman, B. E.; Snider, B. B. J. Org.
Chem. 1984, 49, 3988. For Lewis acid induced carbonyl–
alkyne metathesis reactions (related to enyne metathesis),
see, for instance: (b) Curini, M.; Epifano, F.; Maltese, F.;
Rosati, O. Synlett 2003, 552. (c) Rhee, J. U.; Krische, M. J.
Org. Lett. 2005, 7, 2493. (d) Jin, T.; Yamamoto, Y. Org.
Lett. 2007, 9, 5259. (e) Bera, K.; Sarkar, S.; Biswas, S.;
Maiti, S.; Jana, U. J. Org. Chem. 2011, 76, 3539.
(11) For the Lewis acid induced fragmentation of oxetanes
prepared by Paterno–Büchi cycloaddition, see: Carless, H.
J.; Trivedi, H. S. J. Chem. Soc., Chem. Commun. 1979, 382.
(12) Gerbino, D. C.; Mandolesi, S. D.; Podesta, J. C.; Schmalz,
H.-G. Eur. J. Org. Chem. 2009, 3964.
Supporting Information for this article is available online at
Acknowledgment
(13) Silva, L. F.; Siqueira, F. A.; Pedrozo, E. C.; Vieira, F. Y. M.;
Doriguetto, A. C. Org. Lett. 2007, 9, 1433.
This work was supported by the University of Cologne and the
Fonds der Chemischen Industrie.
(14) Enders, D.; Niemeier, O. Synlett 2004, 2111.
(15) It proved to be important to quench the reaction mixture by
addition of aq NaHCO3 prior to extractive workup.
Otherwise significant amounts of a by-product (a dimer of
17 as indicated by GC–MS) were formed probably through
a proton-mediated process.
Synlett 2011, No. 17, 2487–2490 © Thieme Stuttgart · New York