stereoselectivity (Scheme 1, eq 1, left).10 Further investigation
showed that Grignard reagents couldalsoleadtoring-opening
reactions of doubly activated cyclopropenes generating a series
of 2-(1-alkenyl)malonate-type derivatives as single stereo-
isomers (Scheme 1, eq 1, right).11 We reasoned that the
intramolecular process of such ring-opening reactions by a
heteroatom anion may lead to some useful functionalized
heterocycles (Scheme 1, eq 2). Here we wish to present such an
intramolecular oxygen-attacked ring-opening cyclization re-
action leading to a series of benzofurans and isochromenes
(Scheme 1, eq 3), which is different from the well-known
general method for those heterocycles via the transition-metal-
catalyzed annulation of ortho-alkynyl (or alkenyl) aryl or
benzyl alcohols or their derivatives (Scheme 1, eq 4).12 It
should be noted that the existing methods leading to benzo-
furans with 3-alkoxycarbonylmethyl groups mainly use benzo-
pyranones13 or benzofuranones14 as precursors; Inter- or in-
tramolecular Heck-type reactions have also been reported.15
protected compound dimethyl 2-(2-acetoxyphenyl)cyclo-
prop-2-ene-1,1-dicarboxylate 1a with 1.2 equiv of n-BuLi
at À20 °C, benzofuran 2a was formed directly together with a
byproduct which could not be separated by flash chroma-
tography (Table 1, entry 1). When the loading of n-BuLi
was increased to 2.5 equiv, both the yield and purity were
improved (Table 1, entry 2). Lowering the temperature
gave higher purity but with lower yields (Table 1, entries
2À5). So we tried to further increase the equivalent of
n-BuLi (Table 1, entries 6, 7, 10, 13, and 14); the result went
better until the loading was up to 6.0 equiv, giving 2a as a
single product in good yield (Table 1, entry 13). Examina-
tionofsolvent effectorother organolithium reagentsfailed
to show better results (Table 1, entries 8À12). Thus, it
requires 6.0 equiv of n-BuLi in THF at À60 °C to afford
2a in good yield as the only product, indicating that a large
excess of n-BuLi would guarantee good yield and selectiv-
ity. So wetried toadd 1aton-BuLislowly to ensurethatthe
organolithium reagent was in excess during the whole
addition process. This did work, as 4.0 equiv of n-BuLi
were enough to give a competitive result, generating 2a as
the only product in 72% yield (Table 1, entry 15). The
structure of the product 2a was further confirmed by X-ray
diffraction studies (Figure 1, left).17
Scheme 1. Ring-Opening Reactions of Cyclopropene Deriva-
tives and the Syntheses of Benzofurans
(12) For some reviews on such reactions, see: (a) Zeni, G.; Larock,
R. C. Chem. Rev. 2004, 104, 2285. (b) Patil, N. T.; Yamamoto, Y. Chem.
Rev. 2008, 108, 3395. (c) Luca, L. D.; Nieddu, G.; Porcheddu, A.;
Giacomelli, G. Curr. Med. Chem. 2009, 16, 1. (d) Majumdar, K. C.;
Chattopadhyay, B.; Maji, P. K.; Chattopadhyay, S. K.; Samanta, S.
Heterocycles 2010, 81, 517. (e) Heravi, M. M.; Fazeli, A. Heterocycles
2010, 81, 1979. (f) Sadig, J. E. R.; Willis, M. C. Synthesis 2011, 1. (g)
Cacchi, S.; Fabrizi, G.; Goggiamani, A. Org. Biomol. Chem. 2011, 9, 641.
When Y = alkoxyalkayl, see:Nakamura, I.; Mizushima, Y.; Yamamoto,
Y. J. Am. Chem. Soc. 2005, 127, 15022.
(13) (a) Dulenko, V. I.; Golyak, V. M.; Gubar, V. I.; Alekseev, N. N.
Chem. Heterocycl. Compd. 1979, 15, 815. (b) Crombie, L.; Jones,
R. C. F.; Palmer, C. J. J. Chem. Soc., Perkin Trans. 1 1987, 33. (c)
Piloto, A. M.; Costa, S. P. G; Goncalves, S. T. Tetrahedron Lett. 2005,
46, 4757. (d) Piloto, A. M.; Fonseca, A. S. C.; Costa, S. P. G; Goncalves,
S. T. Tetrahedron 2006, 62, 9258. (e) Filzen, G. F.; Bratton, L.; Cheng,
X.-M.; Erasga, N.; Geyer, A.; Lee, C.; Lu, G.; Pulaski, J.; Sorenson,
R. J.; Unangst, P. C.; Trivedi, B. K.; Xu, X. Bioorg. Med. Chem. Lett.
2007, 17, 3630.
(14) (a) Pearson, J. R.; Proter, Q. N. Aust. J. Chem. 1991, 44, 907. (b)
Olson, J. P.; Davies, H. M. L. Org. Lett. 2006, 10, 573. (c) Kozikowski,
A. P.; Gaisina, I. N.; Yuan, H.; Petukhov, P. A.; Blond, S. Y.; Fedolak,
A.; Caldarone, B.; McGonigle, P. J. Am. Chem. Soc. 2007, 129, 8238. (d)
Venkatesan, A. M.; Santos, O. D.; Ellingboe, J.; Evrard, D. A.;
Harrison, B. L.; Smith, D. L.; Scerni, R.; Hornby, G. A.; Schechter,
L. E.; Andree, T. H. Bioorg. Med. Chem. Lett. 2010, 20, 824.
(15) (a) Negishi, E.; Nguyen, T.; O’Connor, B. Heterocycles 1989, 28,
55. (b) Samizu, K.; Ogasawara, K. Heterocycles 1994, 38, 1745. (c)
Siqueira, F. A.; Taylor, J. G.; Correia, R. D. Tetrahedron Lett. 2010, 51,
2102. (d) Mavunkel, B. J.; Perumattam, J. J.; Tan, X.; Luedtke, G. R.;
Lu, Q.; Lim, D.; Kizer, D.; Dugar, S.; Chakravarty, S.; Xu, Y.; Jung, J.;
Liclican, A.; Levy, D. E.; Tabora, J. Bioorg. Med. Chem. Lett. 2010, 20,
1059.
At first, we synthesized tetrahydro-2H-pyran- and
acetoxy-protected phenol-substituted cyclopropenes, which
we thought, after deprotection, would be transformed
to benzofurans. However, we failed after trying several
deprotection reagents such as K2CO3, NaHCO3, LiOH,
PPTS, etc.16 Interestingly, when we tried to treat the
(16) For some reports on the corresponding deproteciton methods
for tetrahydro-2H-pyran- and acetoxy-protected compounds, see: (a)
Shashidhar, M. S.; Bhatt, M. V. J. Chem. Soc., Chem. Commun. 1987, 9,
654. (b) Montforts, F.-P.; Zibulak, I. G.; Grammenos, W.; Schneider,
M.; Laumen, K. Helv. Chim. Acta 1989, 72, 1852. (c) Crisp, G. T.;
Bubner, T. P. Tetrahedron 1997, 53, 11899.
(9) For some recent examples on ring-openning reactions of cyclo-
propene derivatives affording heterocycles, see: (a) Ma, S.; Zhang, J.
J. Am. Chem. Soc. 2003, 125, 12386. (b) Muler, P.; Allenbach, Y. F.;
Bernardinelli, G. Helv. Chim. Acta 2003, 86, 3164. (c) Chuprakov, S.;
Gevorgyan, V. Org. Lett. 2007, 9, 4463. (d) Diev, V. V.; Stetsenko, O. N.;
Tung, T. Q.; Kopf, J.; Kostikov, R. R.; Molchanov, A. P. J. Org. Chem.
2008, 73, 2396. (e) Chen, S.; Ren, J.; Wang, Z. Tetrahedron 2009, 65,
9146. (f) Miege, F.; Meyer, C.; Cossy, J. Org. Lett. 2010, 12, 248. (g) Zhu,
Z.-B.; Shi, M. Org. Lett. 2010, 12, 4462. (h) Lyaskovskyy, V.; Elders, N.;
Ehlers, A. W.; Lutz, M.; Slootweg, J. C.; Lammertsma, K. J. Am. Chem.
Soc. 2011, 133, 9704.
(17) Crystal data for 2a: C13H12O5, MW = 248.23, Monoclinic,
space group P2(1), Final R indices [I > 2σ(I)], R1 = 0.0299, wR2 =
˚
0.0825, R indices (all data) R1 = 0.0304, wR2 = 0.0834, a = 6.8563(2) A,
˚
˚
b = 8.0054(2) A, c = 11.0535(3) A, R = 90°, β = 102.3850°, γ = 90°,
V = 592.58(3) A , T = 123(2) K, Z = 2, reflections collected/unique:
3
˚
14594/2217 (Rint = 0.0288), number of observations [>2σ(I)] 1107,
parameters: 163. CCDC 832369. For crystallographic data in CIF or other
electronic format see Supporting Information.
(10) Ma, S.; Zhang, J.; Cai, Y.; Lu, L. J. Am. Chem. Soc. 2003, 125, 13954.
(11) Liu, Y.; Ma, S. Chem. Sci. 2011, 2, 811.
Org. Lett., Vol. 14, No. 3, 2012
721