ORGANIC
LETTERS
2012
Vol. 14, No. 2
620–623
Synthesis of C-Glycoside Analogues of
R-Galactosylceramide via Linear Allylic
CꢀH Oxidation and Allyl Cyanate to
Isocyanate Rearrangement
Zheng Liu and Robert Bittman*
Department of Chemistry and Biochemistry, Queens College of The City University of
New York, Flushing, New York 11367-1597, United States
Received December 5, 2011
ABSTRACT
C-Glycoside analogues of R-galactosylceramide were synthesized in which several significant modifications known to promote Th-1 cytokine
production were included. The key transformations include CꢀH oxidation, Sharpless asymmetric epoxidation, olefin cross metathesis, and an
allyl cyanate to isocyanate rearrangement.
R-Galactosylceramide (1, also known as R-GalCer
or KRN7000), an optimized synthetic material origi-
nating from a marine sponge, is the most widely
studied glycolipid antigen for activating invariant
natural killer T (iNKT) cells (Figure 1).1 These cells
are a subset of T lymphocytes that interact with
glycolipid antigens presented by the major histocom-
patibility complex class I-related glycoprotein CD1d.2
Immunoregulatory cytokines, such as IFN-γ (Th-1
type) and IL-4 (Th-2 type), produced by stimulated
iNKT cells hold substantial promise in immunother-
apy and for development of vaccine adjuvants.3 How-
ever, phase I clinical trials of 1 in the treatment of solid
tumors have been ineffective, perhaps as a conse-
quence of counteraction of the Th-1 and Th-2 cyto-
kines induced by 1.4
A variety of glycolipid antigens that can differentially
elicit distinct effector functions in iNKT cells have been
identified. For example, installing an OMe group at the
60-position of the galactosyl moiety gave rise to the
strong Th-1 biasing ligand RCAI-61 (2).5 Introduction of
a p-fluorophenyl group at the terminus of the fatty amide
chain led to 7DW8-5 (3), which induced selective produc-
tion of IFN-γ.6
(4) (a) Giaccone, G.; Punt, C. J.; Ando, Y.; Ruijter, R.; Nishi, N.;
Peters, M.; von Blomberg, B. M.; Scheper, R. J.; van der Vliet, H. J.;
van den Eertwegh, A. J.; Roelvink, M.; Beijnen, J.; Zwierzina, H.; Pinedo,
H. M. Clin. Cancer Res. 2002, 8, 3702. (b) Dhodapkar, M. V.; Geller,
M. D.; Chang, D. H.; Shimizu, K.; Fujii, S.; Dhodapkar, K. M.;
Krasovsky, J. J. Exp. Med. 2003, 197, 1667.
(1) For recent reviews of KRN7000 (compound 1) and its analogues,
ꢀ
see: (a) Banchet-Cadeddu, A.; Henon, E.; Dauchez, M.; Renault, J.-H.;
Monneaux, F.; Haudrechy, A. Org. Biomol. Chem. 2011, 9, 3080. (b) Mori,
K.; Tashiro, T. Heterocycles 2011, 83, 951. (c) Murphy, N.; Zhu, X.; Schmidt,
R. R. Carbohydr. Chem. 2010, 36, 64.
(5) Tashiro, T.; Nakagawa, R.; Inoue, S.; Shiozaki, M.; Watarai, H.;
Taniguchi, M.; Mori, K. Tetrahedron Lett. 2008, 49, 6827.
(2) Godfrey, D. I.; MacDonald, H. R.; Kronenberg, M.; Smyth,
M. J.; Van Kaer, L. Nat. Rev. Immunol. 2004, 4, 231.
(3) (a) Kronenberg, M. Annu. Rev. Immunol. 2005, 23, 877. (b) Van Kaer,
L.; Parekh, V. V.; Wu, L. Immunotherapy 2011, 3, 59.
(6) (a) Li, X.; Fujio, M.; Imamura, M.; Wu, D.; Vasan, S.; Wong,
C.-H.; Ho, D. D.; Tsuji, M. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 13010.
(b) Wu, T.-N.; Lin, K.-H.; Chang, Y.-J.; Huang, J.-R.; Cheng, J.-Y.; Yu,
A. L.; Wong, C.-H. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 17275.
r
10.1021/ol2032448
Published on Web 01/10/2012
2012 American Chemical Society