A. C. Cuñat, S. Flores, J. Oliver, S. Fustero
FULL PAPER
McKay, J. R. Somoza, N. Chauret, C. Seto, J. Scheigetz, G.
Wesolowski, F. Masse, S. Desmarais, M. Ouellet, J. Med.
Chem. 2006, 49, 1066–1079.
14.6 Hz, JHF = 4.7 Hz, 2 F) ppm. HRMS (EI): calcd. for
C12H16F2N2 [M]+ 226.1282; found 226.1284.
Supporting Information (see footnote on the first page of this arti-
cle): Experimental procedures, characterization data for new prod-
ucts, and complete details about the synthesis of new products.
[15] a) I. Ojima, Fluorine in Medicinal Chemistry and Chemical Bio-
logy, Wiley-Blackwell, Chichester, U.K., 2009; See also: b) S.
Purser, P. R. Moore, S. Swallow, V. Gouverneur, Chem. Soc.
Rev. 2008, 37, 320–330; c) K. Müller, Ch. Faeh, F. Diederich,
Science 2007, 317, 1881–1886; d) W. K. Hagmann, J. Med.
Chem. 2008, 51, 4359–4369; e) J.-P. Bégué, D. Bonnet-Delpon,
J. Fluorine Chem. 2006, 127, 992–1012.
Acknowledgments
We would like to thank the Ministerio de Ciencia e Innovación
(MICINN) (CTQ2010-19774) of Spain and the Generalitat Valen-
ciana (PROMETEO/2010/061) for financial support. S. F. expresses
her thanks for a predoctoral fellowship (FPU Programme).
[16] a) W. Ghattas, C. R. Hess, G. Lacazio, R. Hardré, J. P. Klin-
man, M. Réglier, J. Org. Chem. 2006, 71, 8618–8621; b) K.
Tsuda, E. Ohki, S. Nozoe, J. Org. Chem. 1963, 28, 783–785.
[17] a) P. A. Crassous, C. Cardinaletti, A. Carrieri, B. Bruni, M. D.
Vaira, F. Gentili, F. Ghelfi, M. Giannella, H. Paris, A. Piergen-
tili, W. Quaglia, S. Schaaak, C. Vesprini, M. Pigini, J. Med.
Chem. 2007, 50, 3964–3968 and references cited therein; b)
C. A. Busacca, Y. Dong, E. M. Spinelli, Tetrahedron Lett. 1996,
37, 2935–2938.
[1] R. G. S. Berlinck, A. C. B. Burtuloso, M. H. Kossuga, Nat.
Prod. Rep. 2008, 25, 919–954.
[2] M. Silva Dos Santos, A. M. R. Bernardino, M. Co-
sta de Souza, Quim. Nova 2006, 29, 1301–1306.
[3] L. T. Vassilev, B. T. Vu, B. Graves, D. Carvajal, F. Podlaski,
Z. Filipovic, N. Kong, U. Kammlott, C. Lucacs, C. Klein, N.
Fotouhi, E. A. Liu, Science 2004, 303, 844–848.
[4] a) T. Ishikawa, T. Kumamoto, Synthesis 2006, 5, 737–752; b)
T. Ishikawa, K. Takuya, “Amidines in Organic Synthesis” in
Superbases for Organic Synthesis: Guanidines, Amidines, Phos-
phazenes and Related Organocatalysts (Ed.: T. Ishikawa), Wiley,
Chichester, U.K., 2009, pp. 49–91.
[5] L. Peterlin-Masic, D. Kikelj, Tetrahedron 2001, 57, 7073–7105.
[6] M. P. Coles, Dalton Trans. 2006, 985–1001.
[7] See, for example: a) A. A. Aly, A. M. Tour-ElDin, ARKIVOC
2008, 1, 153–194; b) H. Liu, D.-M. Du, Adv. Synth. Catal.
2009, 351, 489–519.
[8] Bicyclic amidines, which include common organic bases such
as DBU and DBN, are frequently used in many base-promoted
transformations: C. Joannesse, C. Simal, C. Concellón, J. E.
Thomsom, C. D. Campbell, A. M. Z. Slawin, A. D. Smith, Org.
Biomol. Chem. 2008, 6, 2900–2907.
[18] Aromatic diamines such as o-phenylendiamine afforded a com-
plex mixture of compounds.
[19] Imidazoline hydrolysis is clearly accelerated during purification
by column chromatography, where significant cleavage of the
imidazolines to afford the corresponding amides was observed.
The use of alumina or deactivated silica gel as stationary
phases (see the Experimental Section) also failed to reduce the
hydrolysis.
[20] Spectroscopic data for the amide derived from the hydrolysis
1
of 3g: H NMR (300 MHz, CDCl3): δ = 2.90 (t, J = 9.0 Hz, 2
H), 3.42 (dt, J = 9.0 Hz, 2 H), 6.44 (dt, J = 16.1, 11.2 Hz, 1
H), 7.12 (dt, J = 16.1, 2.8 Hz, 1 H), 7.29–7.35 (m, 3 H), 7.48–
7.52 (m, 2 H) ppm. 13C NMR (75 MHz, CDCl3): δ = 40.7,
41.8, 114.3 (t, J = 249.8 Hz), 118.8 (J = 24.8 Hz), 127.4, 128.7,
129.5, 134.2, 136.5 (t, J = 11.3 Hz), 164.1 (t, J = 22.5 Hz) ppm.
[9] N. Kumagai, S. Matsunaga, M. Shibasaki, Angew. Chem. 2004,
116, 484; Angew. Chem. Int. Ed. 2004, 43, 478–482.
[10] K. L. Tan, A. Vasudevan, R. G. Bergman, J. A. Ellman, A. J.
Souers, Org. Lett. 2003, 5, 2131–2134.
[11] H. Fujioka, K. Murai, Y. Ohba, H. Hirose, Y. Kita, Chem.
Commun. 2006, 832–834.
[21] a) V. V. Lisitskii, Z. A. Akhmetchenko, I. E. Alekhina, Y. I.
Murinov, Russ. J. Appl. Chem. 2007, 80, 761–766; b) N. A. Bo-
land, M. Casey, S. J. Hynes, J. W. Matthews, M. P. Smyth, J.
Org. Chem. 2002, 67, 3919–3922 and references cited therein.
[22] M. von Rauch, S. Busch, R. Gust, J. Med. Chem. 2005, 48,
466–474.
[12] K. L. S. Hehir, L. O’Donovan, M. P. Carty, F. Aldabbagh, Tet-
rahedron 2008, 64, 4196–4203.
[23] E. D. Raczynska, R. Gawinecki, Trends Org. Chem. 1998, 7,
[13] Q. Zhu, Y. Yu, Org. Lett. 2010, 12, 4156–4159 and references
85–93.
cited therein.
[24] a) P. Seckarova, R. Marek, K. Malinakova, E. Kolehmainen,
D. Hockva, M. Hocek, V. Sklenar, Tetrahedron Lett. 2004, 45,
6259–6263; b) A. F. Pozharskii, E. A. Filatova, I. V. Borovlev,
N. V. Vistorovskii, Chem. Heterocycl. Compd. 2001, 37, 733–
742.
[14] For reviews, see: a) R. Smits, C. D. Cadicamo, K. Burger, B.
Koksch, Chem. Soc. Rev. 2008, 37, 1727–173; b) W.-D, Meng,
F.-L Qing, “Synthesis of gem-Difluoromethylenated Nucleo-
sides” in Fluorine in Medicinal Chemistry and Chemical Biology
(Ed.: I. Ojima), Wiley-Blackwell, Chichester, UK, 2009, chap-
ter 8, pp. 201–212; c) J. L. Aceña, A. Simón-Fuentes, S. Fus-
tero, Curr. Org. Chem. 2010, 14, 928–949; d) S. Fustero, J. F.
Sanz-Cervera, J. L. Aceña, M. Sánchez-Roselló, Synlett 2009,
525–549; See, also: e) S. Fustero, M. Sánchez-Roselló, V. Rod-
rigo, J. F. Sanz-Cervera, J. Piera, A. Simón-Fuentes, C.
del Pozo, Chem. Eur. J. 2008, 14, 7019–7029; f) S. Fustero, M.
Sánchez-Roselló, J. L. Aceña, B. Fernández, A. Asensio, J. F.
Sanz-Cervera, C. del Pozo, J. Org. Chem. 2009, 74, 3414–3423;
g) S. Fustero, S. Catalán, M. Sánchez-Roselló, A. Simón-Fuen-
tes, C. del Pozo, Org. Lett. 2010, 12, 3484–3487; h) N. M. Cer-
queira, P. A. Fernandes, M. J. Ramos, Chem. Eur. J. 2007, 13,
8507–8515; i) J. M. Baskin, J. A. Prescher, S. T. Laughlin, N. J.
Agard, P. V. Chang, I. A. Miller, A. Lo, J. A. Codelli, C. R.
Bertozzi, Proc. Natl. Acad. Sci. USA 2007, 104, 16793–16797;
j) Ch. Fäh, L. A. Hardegger, L. Baitsch, W. B. Schweizer, S.
Meyer, D. Bur, F. Diederich, Org. Biomol. Chem. 2009, 7, 3947–
3957; k) S. N. Crane, W. C. Black, J. T. Palmer, D. E. Davis, E.
Setti, J. Robichaud, J. Paquet, R. M. Oballa, Ch. I. Bayly, D. J.
[25] Bussaca et al. reported that strong bases, in combination with
high temperatures, favor epimerization of chiral imidazolines.
In our case, however, careful manipulation allowed the prepa-
ration of allylated compounds as unique cis diastereoisomers,
as indicated by their NMR spectra. C. A. Busacca, T. Barthol-
omeyzik, S. Cheekoori, N. Grinberg, H. Lee, S. Ma, A. Saha,
S. Shen, C. H. Senanayake, J. Org. Chem. 2008, 73, 9756–9761.
[26] A. H. Hoveyda, A. R. Zhugralin, Nature 2007, 450, 243–251.
[27] a) A. J. Phillips, A. D. Abell, Aldrichim. Acta 1999, 32, 75–89;
b) A. Deiters, S. F. Martin, Chem. Rev. 2004, 104, 2199–2238;
c) P. Compain, Adv. Synth. Catal. 2007, 349, 1829–1846.
[28] a) T. J. Donohhoe, L. P. Fishlock, P. A. Procopiou, Chem. Eur.
J. 2008, 14, 5716–5726; b) V. Gracias, A. F. Gasiecki, S. W.
Djuric, Org. Lett. 2005, 7, 3183–3186.
[29] When the reaction was performed with an excess amount of
G2 or with HG2 catalysts, a tandem RCM–double-bond isom-
erization occurred, decreasing the final yield of the desired
product. a) B. Schmidt, J. Org. Chem. 2004, 69, 7672–7687; b)
this fact has been previously observed in other RCM reactions
7322
www.eurjoc.org
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2011, 7317–7323