mainly due to faultless interpenetrating networks of the very thin
(40 nm) mixed layer.
In conclusion, a tailor-made molecule DTDCTP with a D–A–A
molecular architecture has been synthesized and developed as the
donor material in small-molecule OPVs. The adoption of the
pyrimidine acceptor in DTDCTP has successfully improved the
Voc as compared to our recent work,9 and an enhanced PCE of
6.4% has been realized through striking a balance between
photovoltage and photocurrent. This efficiency is among the
highest ever obtained for organic vacuum-deposited single cells.
Further engineering of molecular structures is currently in
progress and will be reported in due course.
Fig. 3 Tapping-mode atomic force microscopy images of the
DTDCTP:C70 mixed layer shown in a 500 nm ꢁ 500 nm surface area.
(a) The topography and (b) the corresponding phase image.
The authors would like to acknowledge the financial support
from National Science Council of Taiwan (NSC 98-2112-M-
007-028-MY3, 98-2119-M-002-007-MY3) and the Low Carbon
Energy Research Center, National Tsing-Hua University.
coefficients of C70 as compared to those of C60 shown in
Fig. 1(b). Therefore, the better light-harvesting capabilities
of C70 significantly contribute to the higher external quantum
efficiencies (EQE) of the DTDCTP:C70 device in comparison
to those of the DTDCTP:C60 counterpart (inset of Fig. 2).
Note that the integrated values of EQE spectra with the
standard AM 1.5G solar spectrum always agree with the Jsc
values with deviation less than 5% in this study. The FF values
were comparable for DTDCTP:C60 and DTDCTP:C70 devices,
suggesting similar blending layer morphologies and charge
carrier percolated networks in both devices. In addition, the
nanoscale morphology of the DTDCTP:C70 mixed thin film
was probed by tapping-mode atomic force microscopy
(AFM). Surface topography and phase images of the thin film
show a smooth morphology with root-mean-square roughness
of B0.86 nm (Fig. 3). Interestingly, the phase image clearly
shows the appearance of phase-separated domains with sizes
of tens of nanometres. This result indicates that a preferred
morphology was formed in the blending layer and thus provided
sufficient D/A interfaces for exciton dissociation and effective
pathways for charge carrier transport. The results together with
balanced electron and hole mobilities in the DTDCTP:C70
Notes and references
1 (a) C. W. Tang, Appl. Phys. Lett., 1986, 48, 183; (b) G. Yu, J. Gao,
J. C. Hummelen, F. Wudl and A. J. Heeger, Science, 1995,
270, 1789; (c) F. C. Krebs, Sol. Energy Mater. Sol. Cells, 2009,
93, 394.
2 (a) S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon,
D. Moses, M. Leclerc, K. Lee and A. J. Heeger, Nat. Photonics,
2009, 3, 297; (b) H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang,
Y. Yang, L. Yu, Y. Wu and G. Li, Nat. Photonics, 2009, 3, 649;
(c) Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray and
L. Yu, Adv. Mater., 2010, 22, E135; (d) H. Zhou, L. Yang,
A. C. Stuart, S. C. Price, S. Liu and W. You, Angew. Chem., Int.
Ed., 2011, 50, 2995; (e) T.-Y. Chu, J. Lu, S. Beaupre, Y. Zhang,
J.-R. Pouliot, S. Wakim, J. Zhou, M. Leclerc, Z. Li, J. Ding and
Y. Tao, J. Am. Chem. Soc., 2011, 133, 4250; (f) C. Risko,
M. D. McGehee and J.-L. Bredas, Chem. Sci., 2011, 2, 1200.
3 B. Walker, C. Kim and T.-Q. Nguyen, Chem. Mater., 2011, 23, 470.
4 (a) B. Walker, A. B. Tamayo, X.-D. Dang, P. Zalar, J. H. Seo,
A. Garcia, M. Tantiwiwat and T.-Q. Nguyen, Adv. Funct. Mater.,
2009, 19, 3063; (b) S. Loser, C. J. Bruns, H. Miyauchi, R. P. Ortiz,
A. Facchetti, S. I. Stupp and T. J. Marks, J. Am. Chem. Soc., 2011,
133, 8142; (c) R. Fitzner, E. Reinold, A. Mishra, E. Mena-Osteritz,
H. Ziehlke, C. Korner, K. Leo, M. Riede, M. Weil, O. Tsaryova,
A. Weiß, C. Uhrich, M. Pfeiffer and P. Bauerle, Adv. Funct.
Mater., 2011, 21, 897.
mixed layer (B3 ꢁ 10ꢀ5 cm2 Vꢀ1 sꢀ1 at 700 (V cm
)
ꢀ1 1/2, for
details see Fig. S6 and Table S4, ESIw) contribute to high FF
values of up to 0.56 offered in DTDCTP:C70 PMHJ cells.
The total absorption and EQE spectra of the DTDCTP:C70
device were extracted to give the corresponding internal
quantum efficiency (IQE) spectrum according to the formula:
IQE (l) = EQE (l)/absorption (l) (for details see Fig. S7,
ESIw). As shown in the inset of Fig. 2, the IQE of the
DTDCTP:C70 device exhibits a high plateau of over 80%
throughout the entire visible spectrum (380–700 nm).
Considering the light absorption and scattering loss by other
layers (the ITO, metal, and glass substrate), such high IQE
values indicate that most of the photons absorbed by the
active composite layers lead to separated carriers, and all
photogenerated carriers are efficiently collected at the electrodes.
To gain more insight into the collection efficiency of free carriers,
transfer matrix simulation of optical field and exciton formation
distribution was performed.13 Under the assumption that 95%
of photons are absorbed by a 40 nm DTDCTP:C70 mixed layer
and successfully dissociated into free charge carriers that are all
collected at the electrodes, the simulated EQE spectrum matches
well with the experimental data. This result reveals that only
B5% of free charges recombine during the course of transport
towards electrodes. The remarkably high collection efficiency is
5 G. Wei, S. Wang, K. Sun, M. E. Thompson and S. R. Forrest,
Adv. Energy Mater., 2011, 1, 184.
6 Y. Matsuo, Y. Sato, T. Niinomi, I. Soga, H. Tanaka and
E. Nakamura, J. Am. Chem. Soc., 2009, 131, 16048.
7 Y. Liu, X. Wan, F. Wang, J. Zhou, G. Long, J. Tian, J. You,
Y. Yang and Y. Chen, Adv. Energy Mater., 2011, 1, 771.
8 (a) S. Roquet, A. Cravino, P. Leriche, O. Aleveque, P. Frere and
J. Roncali, J. Am. Chem. Soc., 2006, 128, 3459; (b) H. Shang,
H. Fan, Y. Liu, W. Hu, Y. Li and X. Zhan, Adv. Mater., 2011,
23, 1554; (c) N. M. Kronenberg, V. Steinmann, H. Burckstummer,
J. Hwang, D. Hertel, F. Wurthner and K. Meerholz, Adv. Mater.,
2010, 22, 4193; (d) V. Steinmann, N. M. Kronenberg, M. R. Lenze,
S. M. Graf, D. Hertel, K. Meerholz, H. Burckstummer,
E. V. Tulyakova and F. Wurthner, Adv. Energy Mater., 2011, 1, 888.
9 L.-Y. Lin, Y.-H. Chen, Z.-Y. Huang, H.-W. Lin, S.-H. Chou,
F. Lin, C.-W. Chen, Y.-H. Liu and K.-T. Wong, J. Am. Chem.
Soc., 2011, 133, 15822.
10 (a) L.-Y. Lin, C.-H. Tsai, K.-T. Wong, T.-W. Huang, C.-C. Wu,
S.-H. Chou, F. Lin, S.-H. Chen and A.-I Tsai, J. Mater. Chem.,
2011, 21, 5950; (b) C.-H. Chen, Y.-C. Hsu, H.-H. Chou, K. R.
J. Thomas, J. T. Lin and C.-P. Hsu, Chem.–Eur. J., 2010, 16, 3184.
11 (a) A. M. C. Ng, K. Y. Cheung, M. K. Fung, A. B. Djurisic and
W. K. Chan, Thin Solid Films, 2008, 517, 1047; (b) A. B. Djurisic,
T. Fritz and K. Leo, J. Opt. A: Pure Appl. Opt., 2000, 2, 458.
12 J. Xue, B. P. Rand, S. Uchida and S. R. Forrest, Adv. Mater., 2005,
17, 66.
13 L. A. A. Pettersson, L. S. Roman and O. Inganas, J. Appl. Phys.,
1999, 86, 487.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 1857–1859 1859