10.1002/chem.201903210
Chemistry - A European Journal
FULL PAPER
to 120 °C. The temperature was then held for 48 h, and the material was
cooled to room temperature at a rate of 2.5 °C/min. The resulting crystals
were then washed three times with 5 mL of DMF. The solvent was then
exchanged with chloroform (5 mL) over three days, replacing the old
chloroform with fresh chloroform every 24 h.
Keywords: metal-organic frameworks • coordination polymers •
metal cation effect • flexibility • regioselectivity
[1]
[2]
[3]
[4]
[5]
H.-C. Zhou, J. R. Long, O. M. Yaghi, Chem. Rev. 2012, 112, 673–
674.
DMOF(Co)-2,5-NH2Cl: BDC-2,5-NH2Cl (2, 107 mg, 0.5 mmol) was used
instead of BDC-2,3-NH2Cl (1) with the same protocol as was used for the
synthesis of DMOF(Co)-2,3-NH2Cl.
L. J. Murray, M. Dincă, J. R. Long, Chem. Soc. Rev. 2009, 38,
1294–1314.
J.-R. Li, R. J. Kuppler, H.-C. Zhou, Chem. Soc. Rev. 2009, 38,
1477–1504.
DMOF(Cu)-2,3-NH2Cl: BDC-2,3-NH2Cl (1, 107 mg, 0.5 mmol) and
Cu(NO3)2·3H2O (121 mg, 0.5 mmol) were dissolved in 12.5 mL of DMF.
The pillar ligand (DABCO, 56 mg, 0.5 mmol) was added to this mixture. A
green gel formed upon the addition of DABCO. The mixture was then
transferred to a scintillation vial and heated at a rate of 2.5 °C/min from
room temperature to 120 °C. The temperature was then held for 24 h,
and then the material was cooled to room temperature at a rate of
2.5 °C/min. The resulting crystals were then washed three times with 5
mL of DMF. The solvent was then exchanged with chloroform (5 mL)
over three days, replacing the old chloroform with fresh chloroform every
24 h.
J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, J. T.
Hupp, Chem. Soc. Rev. 2009, 38, 1450–1459.
A. Schneemann, V. Bon, I. Schwedler, I. Senkovska, S. Kaskel, R.
A. Fischer, Chem. Soc. Rev. 2014, 43, 6062–6096.
A. Clearfield, Dalton Trans. 2016, 45, 4100–4112.
T. Loiseau, C. Volkringer, M. Haouas, F. Taulelle, G. Férey, C. R.
Chim. 2015, 18, 1350–1369.
[6]
[7]
[8]
[9]
G. Férey, C. Serre, Chem. Soc. Rev. 2009, 38, 1380–1399.
S. Henke, D. C. Florian Wieland, M. Meilikhov, M. Paulus, C.
Sternemann, K. Yusenko, R. A. Fischer, CrystEngComm 2011, 13,
6399–6404.
DMOF(Cu)-2,5-NH2Cl: BDC-2,5-NH2Cl (2, 107 mg, 0.5 mmol) was used
instead of BDC-2,3-NH2Cl (1) with the same protocol as was used for the
synthesis of DMOF(Cu)-2,3-NH2Cl.
[10]
[11]
[12]
[13]
[14]
S. Henke, A. Schneemann, A. Wütscher, R. A. Fischer, J. Am.
Chem. Soc. 2012, 134, 9464–9474.
M. Kim, J. A. Boissonnault, P. V. Dau, S. M. Cohen, Angew. Chem.
Int. Ed. 2011, 50, 12193–12196.
X-ray Crystal Structure Analysis: A single crystal of the MOF was coated
with Paratone-N oil, and the diffraction data were measured by
synchrotron radiation ( = 0.69999 Å) on an ADSC Quantum-210
detector at 2D SMC with a silicon (111) double-crystal monochromator
(DCM) at the Pohang Accelerator Laboratory (PAL; Pohang, Korea).
ADSC Q210 ADX software[27] was used for data collection (detector
distance of 63 mm, omega scan; = 1°, exposure time of 10 s per
frame), and HKL3000sm (Ver. 703r)[28] was used for cell refinement,
reduction, and absorption corrections. The crystal structure was solved
by the direct method using SHLEXT (2014/4)[28] for MOFs and refined by
full-matrix least-squares refinement using the SHELXL (2014/7)
computer program. For all the crystals, the contributions from disordered
solvent molecules were removed by using the SQUEEZE routine
(PLATON),[29] and the outputs from the SQUEEZE calculations are
attached to each CIF file. The positions of all non-H atoms were refined
with anisotropic displacement factors. All H atoms were placed using a
riding model, and their positions were constrained relative to their parent
atoms using the appropriate HFIX command in SHELXL-2014. The X-ray
diffraction data for the MOFs were collected using synchrotron (PAL).
The supplementary crystallographic data for this study are found in the
CCDC-1909253 and CCDC-1919446 for DMOF(Co)-2,5-NH2Cl and
DMOF(Zn)-2,3-NH2Cl, respectively. The data can be obtained free of
CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033;
e-mail: deposit@ccdc.cam.ac.uk).
H. Hahm, K. Yoo, H. Ha, M. Kim, Inorg. Chem. 2016, 55, 7576–
7581.
H. Ha, H. Hahm, D. G. Jwa, K. Yoo, M. H. Park, M. Yoon, Y. Kim, M.
Kim, CrystEngComm 2017, 19, 5361–5368.
N. Klein, H. C. Hoffmann, A. Cadiau, J. Getzschmann, M. R. Lohe,
S. Paasch, T. Heydenreich, K. Adil, I. Senkovska, E. Brunner, et al.,
J. Mater. Chem. 2012, 22, 10303–10312.
[15]
[16]
[17]
F. Nouar, T. Devic, H. Chevreau, N. Guillou, E. Gibson, G. Clet, M.
Daturi, A. Vimont, J. M. Grenèche, M. I. Breeze, et al., Chem.
Commun. 2012, 48, 10237–10239.
J. Bergmann, K. Stein, M. Kobalz, M. Handke, M. Lange, J. Möllmer,
F. Heinke, O. Oeckler, R. Gläser, R. Staudt, et al., Microporous
Mesoporous Mater. 2015, 216, 56–63.
K. Kobalz, M. Kobalz, J. Möllmer, U. Junghans, M. Lange, J.
Bergmann, S. Dietrich, M. Wecks, R. Gläser, H. Krautscheid, Inorg.
Chem. 2016, 55, 6938–6948.
[18]
[19]
Y.-C. Ou, Y.-Y. Song, M.-M. Hao, J.-Z. Wu, J.-Z. Wu, Y.-C. Ou, Y.-Y.
Song, H.-M. Du, M.-M. Hao, J.-Z. Wu, Crystals 2017, 7, 311.
A. Schneemann, P. Vervoorts, I. Hante, M. Tu, S. Wannapaiboon, C.
Sternemann, M. Paulus, D. C. F. Wieland, S. Henke, R. A. Fischer,
Chem. Mater. 2018, 30, 1667–1676.
[20]
[21]
[22]
[23]
D. N. Dybtsev, H. Chun, K. Kim, Angew. Chem. Int. Ed. 2004, 43,
5033–5036.
Acknowledgements
H. Jasuja, Y. Jiao, N. C. Burtch, Y. Huang, K. S. Walton, Langmuir
2014, 30, 14300–14307.
This research was supported by the Basic Science Research
Program (2019R1A2C4070584) and the Science Research
Center (2016R1A5A1009405) through the National Research
Foundation of Korea (NRF) funded by the Ministry of Science
and ICT.
D. Sarma, K. V. Ramanujachary, S. E. Lofland, T. Magdaleno, S.
Natarajan, Inorg. Chem. 2009, 48, 11660–11676.
R. Vismara, G. Tuci, N. Mosca, K. V. Domasevitch, C. Di Nicola, C.
Pettinari, G. Giambastiani, S. Galli, A. Rossin, Inorg. Chem. Front.
2019, 6, 533–545.
This article is protected by copyright. All rights reserved.