L.C. Henderson et al. / Bioorganic Chemistry 40 (2012) 1–5
(f) O.C. Farokhzad, R. Langer, ACS Nano 3 (1) (2009) 16–20;
5
incorporated into the AR antatonist molecular design. It has been
shown that the use of PEG spacers between the AuNP surface
and the small molecular drug has profound influence on cellular
and systemic toxicity [13]. The use of a large spacer between AuNP
and the small molecule has another benefit to the system whereby
this spacer ensures that the biologically active molecule conju-
gated to the gold core protrudes from the surface a sufficient
amount to allow interaction with the cellular surface. As such these
compounds, while effective on their own require a slight redesign
and synthesis to allow for a biocompatible polymer to be incorpo-
rated into the scaffold to by-pass the cellular toxicity observed in
this case.
(g) X. Li, J. Guo, J. Asong, M.A. Wolfert, G-J. Boons, J. Am. Chem. Soc. 133 (29)
(2011) 11147–11153.
[4] Selected examples: (a) S. Chen, J.M. Sommers, J. Phys. Chem. B 105 (2001)
8816–8820;
(b) K.C. Anyaogu, A.V. Fedorov, D.C. Neckers, Langmuir 24 (2008) 4340–4346;
(c) E. Wassanayantasee, W. Cynthial, S. Thanaponsangvanich, R.S. Addleman,
T.G. Carter, R.J. Wiacek, G.E. Fryxell, C. Timchalk, M. Warner, Environ. Sci.
Technol. 41 (2007) 5114–5119;
(d) A.G. Kanaras, Z. Wang, A.D. Bates, R. Cosstick, M. Brust, Angew. Chem. 115
(2) (2003) 201–204;
(e) M-C. Daniel, D. Astruc, Chem. Rev. 104 (2004) 293–346;
(f) J.C. Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, G.M. Whitesides, Chem. Rev.
105 (2005) 1103–1169;
(g) M. Brust, C.J. Kiely, Colloids Surf. A: Physicochem. Eng. Aspects 202 (2002)
175–186;
(h) C.A. Fernandez, C.M. Wai, Small 2 (11) (2006) 1266–1269;
(i) H. Ke, J. Wang, Z. Dai, Y. Jin, E. Qu, Z. Xing, C. Guo, X. Yue, J. Liu, Angew.
Chem. Int. Ed. 50 (2011) 1–6.
3. Summary
[5] Selected examples: (a) D.K. Wysowski, J.L. Fourcroy, J. Urol. 155 (4) (1996)
209–212;
In summary we have synthesized a range of a-lipoic acid N-phe-
(b) J. Bustamante, J.K. Lodge, L. Marcocci, H.J. Tritschler, L. Packer, B.H. Rihn,
Free Radical Biol. Med. 24 (6) (1998) 1023–1039;
(c) A. Bast, G.R.M.M. Haenena, Biochim. Biophys. Acta, Lipids Lipid Metab. 963
(3) (1998) 558–561;
(d) C. Müller, F. Dünschede, E. Koch, A.M. Vollmar, A.K. Kiemer, Am. J. Physiol.
Gastrointest. Liver Physiol. 285 (4) (2003) 769–778.
nylamides 4a–e bearing a representative range of electronic sub-
stituents and these compounds were then assessed for their
ability to block androgen-stimulated proliferation of a human pros-
tate cancer cell line, LNCaP. Various synthetic protocols were used
for the synthesis of these compounds showing that no one method
is optimal for both electron withdrawn and electron neutral ani-
lines. Additionally these compounds generally displayed excellent
[6] E. Frérot, J. Coste, A. Pantaloni, M. Dufour, P. Jouin, Tetrahedron 47 (2) (1991)
259–270.
[7] S-J. Zhang, Q-F. Ge, D-W. Guo, W-X Hu, H-Z. Liu, Bioorg. Med. Chem. Lett. 20
(2010) 3078–3083.
[8] (a) L.C. Henderson, N. Byrne, Green Chem. 13 (4) (2011) 813–816;
(b) M.D. Johnstone, A.J. Lowe, L.C. Henderson, F.M. Pfeffer, Tetrahedron Lett. 51
(45) (2010) 5889–5891;
anti-proliferative activities in the 20–5 lM range with compound
4e showing by far the best cancer cell growth inhibition.
Conjugation of these compounds a gold nanoparticle and reas-
sessment of their anti-proliferative potential has shown that cellu-
lar toxicity shown by the nanoparticle conjugates in a limiting
factor before any further studies can take place.
(c) M. Larhed, C. Moberg, A. Hallberg, Acc. Chem. Res. 35 (2002) 717–727;
(d) P. Lidstrom, J. Tierney, B. Wathey, J. Westman, Tetrahedron 57 (2001)
9225–9283.
[9] Selected Examples (a) D.J. Hwang, J.Yang.X. Huiping, I.M. Rakov, M.L. Mohler,
J.T. Dalton, D.D. Miller, Bioorg. Med. Chem. 14 (2006) 6525–6538;
(b) H-Y. Xiao, A. Balog, R.M. Attar, D. Fairfax, L.B. Fleming, C.L. Holst, G.S.
Martin, L.M. Rossiter, J. Chen, M-E. Cvjic, J. Dell-John, J. Geng, M.M. Gottardis,
W-C Han, A. Nation, M. Obermeiera, C.A. Rizzo, L. Schweizer, T. Spires Jr., W.
Shan, A. Gavai, M.E. Salvati, G. Vite, Bioorg. Med. Chem. Lett. 20 (2010) 4491–
4495;
Acknowledgments
The authors gratefully acknowledge the CASS foundation for the
funding to carry out this work. We would also like to thank the
Deakin University Strategic Research Center for biotechnology,
chemistry and systems biology for their financial contribution.
(c) S.M. Singh, S. Gauthier, F. Labrie, Curr. Med. Chem. 7 (2) (2000) 211–247;
(d) W. Gao, J.T. Dalton, Drug Discov. Today 12 (5/6) (2007) 241–248.
[10] See Electronic Supplementary Information for Representative Procedures for
Each Method A–D, and for the Biological Evaluation Process, Gold Nanoparticle
Synthesis and Dynamic Light Scattering Analysis.
[11] Characterisation data for compounds 4c and 4e: 4c 1H NMR (CDCl3, 270 MHz):
d 7.84 (1H, s, Ar-H) 7.70–7.68 (1H, d, J = 8 Hz, Ar-H) 7.42–7.39 (1H, d, J = 12 Hz,
Ar-H) 3.58–3.53 (1H, m, CH) 3.17–3.11 (2H, m, CH2) 2.39–2.36 (4H, m, CH2)
Appendix A. Supplementary material
Supplementary data associated with this article can be found, in
1.93–1.87 (2H, m, CH2) 1.77–1.64 (2H, m, CH2) 1.51–1.46 (2H, m, CH2) (NH is
2
not observed); 13C NMR (CDCl3, 67.5 MHz): d 171.8, 132.0, 128.6 (q, JC–F
=
1
3
32 Hz), 126.9, 122.6 (q, JC–F = 272 Hz), 120.6, 118.9 (q, JC–F = 6 Hz), 116.6,
56.5, 40.4, 38.6, 37.3, 34.7, 28.9, 25.2; 19F NMR (CDCl3, 270 MHz) ꢀ62.67;
HRMS (ESI m/z): Calcd. For [C15H17F3N2OS2 Na+] 406.02844, found 406.02763;
4e 1H NMR (CDCl3, 270 MHz): d 8.4 (1H, s, NH) 8.04–8.03 (1H, d, J = 1.6 Hz, Ar-
H) 7.93 (1H, dd, J = 1.89, 8.64 Hz, Ar-H) 7.74–7.71 (1H, d, J = 8.64 Hz, Ar-H)
3.59–3.49 (1H, qui, J = 6.48 Hz, CH) 3.20–3.03 (2H, m, CH2) 2.50–2.32 (4H, m,
CH2) 1.97–1.77 (2H, m, CH2) 1.72–1.62 (2H, m, CH2) 1.59–1.30 (2H, m, CH2);
References
EDCI = N-(3-dimethylaminopropyl)-N0-ethylcarbodiimide
hydrochloride; PyBrop = bromotripyrrolidinophosphonium
hexafluorophosphate.
2
13C NMR (CDCl3, 67.5 MHz): d 172.1, 142.7, 136.9, 134.0 (q, JC–F = 32.5 Hz),
121.8122.2 (q, 1JC–F = 272 Hz), 117.3 (q, 3JC–F = 5.5 Hz), 117.2, 103.6, 56.4, 40.3,
38.6, 37.4, 34.6, 28.8, 24.9; 19F NMR (CDCl3, 270 MHz) ꢀ62.05; HRMS (ESI m/z):
Calcd. For [C16H117F3N2OS2 Na]+ 397.06266, found 397.06197.
[12] M. Brust, M. Walker, D. Bethell, D.J. Schiffrin, R. Whyman, Chem. Commun.
(1994) 801–802.
[1] A. Jemal, H. Thomas, T. Murray, M. Thun, Cancer J. Clin. 52 (2002) 23.
[2] J.T. Dalton, W. Gao, Toxicity of steroids for use to treat prostate cancer, in: C.M.
Bunce, M.J. Campbell (Eds.), Nuclear receptors, Proteins and Cell Regulation,
vol. 8, C _Springer Science & Business Media B.V, 2010, pp. 143–182. doi:
[3] (a) E. Lavik, H. von Recum, ACS Nano 5 (5) (2011) 3419–3424;
(b) T.W. Odom, C.L. Nehl, ACS Nano 2 (4) (2008) 612–616;
(c) R. Arvizo, R. Battacharya, P. Mukherjee, Expert Opin. Drug Deliv. 7 (6)
(2010) 753–763;
[13] (a) K. Knop, R. Hoogenboom, D. Fischer, U.S. Schubert, Angew. Chem. Int. Ed. 49
(2010) 2–23;
(b) C.M. Cobley, L. Au, J. Chen, Y. Xia, Expert Opin. Drug Deliv. 7 (5) (2010) 577–
587;
(c) E.C. Dreaden, S.C. Mwakwari, Q.H. Sodji, A.K. Oyelere, M.A. El-Sayed,
Bioconjugate Chem. 20 (2009) 2247–2253;
(d) M. Mahmoudi, K. Azadmanesh, M.A. Shokrgozar, W.S. Journeay, S. Laurent,
Chem. Rev. 111 (5) (2011) 3407–3432.
(d) X. Huang, X. Peng, Y. Wang, Y. Wang, D.M. Shin, M.A. El-Sayed, S. Nie, ACS
Nano 4 (10) (2010) 5887–5896;
(e) H.T. Ke, Z.F. Dai, Y.S. Jin, Z.W. Xing, C.X. Guo, X.L. Yue, Angew. Chem. Int. Ed.
50 (2011) 1–6;