A. S. Patel, W. J. Lees / Bioorg. Med. Chem. 20 (2012) 1020–1028
1027
cooled to 0 °C, filtered, and then washed with EtOAc (3 ꢁ 100 mL).
followed by withdrawing 20
l
L of the resulting solution and then
The aqueous layer was reduced partially and then lyophilized sev-
eral times by dissolving the residue in water to provide 1.042 g of 6
as a white powder, 93% yield.
measuring the enzymatic activity.19,46,47,49
Acknowledgment
This work was supported in part by the National Science Foun-
dation under Grant No. CHE-0342167 to W.J.L.
4.4.2.1. N1,N3-Bis(4-mercaptobenzyl)-N1,N1,N3N3-tetramethyl-
propane-1,3-diaminium bromide (6). 93% Yield, 1H NMR (D2O,
400 MHz) d 7.46 (d, J = 8.4 Hz, 4H), 7.41 (d, J = 8.4 Hz, 4H), 4.52
(s, 4H), 3.37 (t, J = 8.3 Hz, 4H), 3.09 (s, 12H), 2.41 (quintet,
J = 8.3 Hz, 2H). 13C NMR (D2O, 100 MHz) d 135.8, 133.5, 129.0,
123.5, 68.5, 60.1, 49.7, 17.0. HRMS (ESI+) calcd for C21H32Br2N2S2
(MꢀBr)+ 455.1190, obsd 455.1175.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
4.4.2.2. N1,N6-Bis(4-mercaptobenzyl)-N1,N1,N6N6-tetramethyl-
hexane-1,6-diaminium bromide (7). 51% Yield, 1H NMR (D2O,
400 MHz) d 7.50 (d, J = 7.2 Hz, 4H), 7.45 (d, J = 7.7 Hz, 4H), 4.48
(s, 4H), 3.30 (t, J = 8.0 Hz, 4H), 3.08 (s, 12H), 1.92 (br s, 4H), 1.47
(br s, 4H). 13C NMR (D2O, 100 MHz) d 135.3, 133.4, 128.9, 124.1,
67.4, 63.8, 49.6, 25.2, 22.0. HRMS (ESI+) calcd for C24H38Br2N2S2
(MꢀBr)+ 497.1659, obsd 497.1638.
1. Martelli, P. L.; Fariselli, P.; Casadio, R. Proteomics 2004, 4, 1665.
2. Trivedi, M. V.; Laurence, J. S.; Siahaan, T. J. Curr. Protein Pept. Sci. 2009, 10, 614.
3. Sahdev, S.; Khattar, S. K.; Saini, K. S. Mol. Cell. Biochem. 2008, 307, 249.
4. Lilie, H.; Schwarz, E.; Rudolph, R. Curr. Opin. Biotechnol. 1998, 9, 497.
5. Narayan, M.; Welker, E.; Wedemeyer, W. J.; Scheraga, H. A. Acc. Chem. Res. 2000,
33, 805.
6. Lees, W. J. Curr. Opin. Chem. Biol. 2008, 12, 740.
7. Winter, J.; Lilie, H.; Rudolph, R. FEMS Microbiol. Lett. 2002, 213, 225.
8. Gilbert, H. F. J. Biol. Chem. 1997, 272, 29399.
9. Wedemeyer, W. J.; Welker, E.; Narayan, M.; Scheraga, H. A. Biochemistry 2000,
39, 4207.
4.5. Enzymatic assays
10. Woycechowsky, K. J.; Wittrup, K. D.; Raines, R. T. Chem. Biol. 1999, 6, 871.
11. Gough, J. D.; Williams, R. H.; Donofrio, A. E.; Lees, W. J. J. Am. Chem. Soc. 2002,
124, 3885.
12. Konishi, Y.; Ooi, T.; Scheraga, H. A. Biochemistry 1981, 20, 3945.
13. Beld, J.; Woycechowsky, K. J.; Hilvert, D. J. Biotechnol. 2010, 150, 481.
14. Beld, J.; Woycechowsky, K. J.; Hilvert, D. ACS Chem. Biol. 2010, 5, 177.
15. Cabrele, C.; Fiori, S.; Pegoraro, S.; Moroder, L. Chem. Biol. 2002, 9, 731.
16. Gough, J. D.; Barrett, E. J.; Silva, Y.; Lees, W. J. J. Biotechnol. 2006, 125, 39.
17. Gough, J. D.; Gargano, J. M.; Donofrio, A. E.; Lees, W. J. Biochemistry 2003, 42,
11787.
4.5.1. Refolding of denatured reduced lysozyme (0.1 mg/mL)
Reduced lysozyme18,25,61 (10 mg/mL) was dissolved in 0.1 M
acetic acid containing 6 M Gdn HCl at pH 2.5
(e280nm =
2.37 mL mgꢀ1 cmꢀ1).46,47 The pH of the stock solutions containing
the thiol or disulfide were also adjusted to the appropriate pH
(7.0 or 8.0) with 1 M KOH prior to use. Refolding of reduced lyso-
zyme was carried out in a deoxygenated renaturation buffer
[(0.1 M bis tris propane–HCl for pH 7.0 or 0.1 M Tris–HCl for pH
8.0), 1 mM EDTA, 0.5 M Gdn HCl, (various concentrations of
GSH, aromatic monothiol, or aromatic dithiols), and GSSG]. In a
18. Gurbhele-Tupkar, M. C.; Perez, L. R.; Silva, Y.; Lees, W. J. Bioorg. Med. Chem.
2008, 16, 2579.
19. Madar, D. J.; Patel, A. S.; Lees, W. J. J. Biotechnol. 2009, 142, 214.
20. Woycechowsky, K. J.; Raines, R. T. Biochemistry 2003, 42, 5387.
21. Walker, K. W.; Gilbert, H. F. J. Biol. Chem. 1997, 272, 8845.
22. Gough, J. D.; Lees, W. J. J. Biotechnol. 2005, 115, 279.
23. DeCollo, T. V.; Lees, W. J. J. Org. Chem. 2001, 66, 4244.
24. Kiefhaber, T.; Rudolph, R.; Kohler, H. H.; Buchner, J. Biotechnology 1991, 9, 825.
25. Goldberg, M. E.; Rudolph, R.; Jaenicke, R. Biochemistry 1991, 30, 2790.
26. Zettlmeissl, G.; Rudolph, R.; Jaenicke, R. Biochemistry 1979, 18, 5567.
27. Orsini, G.; Goldberg, M. E. J. Biol. Chem. 1978, 253, 3453.
28. Rudolph, R.; Lilie, H. FASEB J. 1996, 10, 49.
29. Dong, X. Y.; Huang, Y.; Sun, Y. J. Biotechnol. 2004, 114, 135.
30. Maeda, Y.; Yamada, H.; Ueda, T.; Imoto, T. Protein Eng. 1996, 9, 461.
31. Rariy, R. V.; Klibanov, A. M. Proc. Natl. Acad. Sci. U.S.A. 1997, 94, 13520.
32. Arakawa, T.; Tsumoto, K. Biochem. Biophys. Res. Commun. 2003, 304, 148.
33. Reddy, R. C.; Lilie, H.; Rudolph, R.; Lange, C. Protein Sci. 2005, 14, 929.
34. Wetlaufer, D. B.; Xie, Y. Protein Sci. 1995, 4, 1535.
35. Zardeneta, G.; Horowitz, P. M. Anal. Biochem. 1994, 223, 1.
36. Cleland, J. L.; Builder, S. E.; Swartz, J. R.; Winkler, M.; Chang, J. Y.; Wang, D. I.
Biotechnology 1992, 10, 1013.
37. Mendoza, J. A.; Rogers, E.; Lorimer, G. H.; Horowitz, P. M. J. Biol. Chem. 1991,
266, 13044.
38. Rozema, D.; Gellman, S. H. Biochemistry 1996, 35, 15760.
39. Yasuda, M.; Murakami, Y.; Sowa, A.; Ogino, H.; Ishikawa, H. Biotechnol. Prog.
1998, 14, 601.
40. Barrientos, A. G.; de la Fuente, J. M.; Rojas, T. C.; Fernandez, A.; Penades, S.
Chem. Eur. J. 2003, 9, 1909.
41. Lang, H.; Duschl, C.; Vogel, H. Langmuir 1994, 10, 197.
42. Acharya, A. S.; Taniuchi, H. Mol. Cell. Biochem. 1982, 44, 129.
43. Bach, R. D.; Dmitrenko, O.; Thorpe, C. J. Org. Chem. 2008, 73, 12.
44. Dobson, C. M.; Evans, P. A.; Radford, S. E. Trends Biochem. Sci. 1994, 19, 31.
45. Epstein, C. J.; Goldberger, R. F. J. Biol. Chem. 1963, 238, 1380.
46. Wetlaufer, D. B.; Saxena, V. P. Biochemistry 1970, 9, 5015.
47. Roux, P.; Delepierre, M.; Goldberg, M. E.; Chaffotte, A. F. J. Biol. Chem. 1997, 272,
24843.
48. Lanckriet, H.; Middelberg, A. P. J. J. Chromatogr., A 2004, 1022, 103.
49. Jolles, P. Methods Enzymol. 1962, 5, 137.
50. Winnik, M. A. Chem. Rev. 1981, 81, 491.
51. Moss, R. A.; Dix, F. M. J. Org. Chem. 1981, 46, 3029.
52. Aitken, R. A.; Drysdale, M. J.; Ryan, B. M. J. Chem. Soc., Perkin Trans. 1 1998,
3345.
53. Hevehan, D. L.; De Bernardez Clark, E. Biotechnol. Bioeng. 1997, 54, 221.
54. Woehrle, G. H.; Warner, M. G.; Hutchison, J. E. Langmuir 2004, 20, 5982.
55. Steinem, C.; Janshoff, A.; von dem Bruch, K.; Reihs, K.; Goossens, J.; Galla, H. J.
Bioelectrochem. Bioenerg. 1998, 45, 17.
1.5 mL-Eppendorf tube, 10
lL of reduced lysozyme (10 mg/mL)
was added to 990 L of renaturation buffer. For reproducible mix-
l
ing conditions, the renaturation buffer was placed in an Eppendorf
tube, the protein was added as a droplet on the wall of the tube
above the buffer meniscus, and mixing was achieved by vigorous
agitation with a vortex mixer for 15 s. Subsequently, 20 lL aliquots
were removed at specific times and assayed for enzymatic activ-
ity.18,46,47,49All the refolding experiments were performed at 25 °C.
4.5.2. Refolding of denatured reduced lysozyme (1 mg/mL)
Reduced lysozyme (11 mg/mL) was dissolved in 0.1 M acetic
acid containing 6 M Gdn HCl at pH 2.5. The pH of the protein solu-
tion was then adjusted to that of the folding experiment (pH 7.0 or
8.0) by the addition of 3 M KOH. After adjusting the pH, the con-
centration of the protein solution was determined by UV–vis, and
the final concentration was adjusted to 10 mg/mL with 6 M Gdn
HCl, if necessary (e
280nm = 2.37 mL mgꢀ1 cmꢀ1).25,34,47 Stock solu-
tions of GSH, aromatic monothiol, aromatic dithiols, and GSSG
were prepared in deoxygenated 0.1 M bis tris propane–HCl (for
pH 7.0) or 0.1 M Tris–HCl (for pH 8.0), 1.25 M Gdn HCl, and
1 mM EDTA. From the stock solutions, varying amount of GSH
and GSSG, aromatic monothiol and GSSG, or aromatic dithiols
and GSSG were mixed in 0.1 M bis tris propane–HCl at pH 7.0 or
0.1 M Tris–HCl at pH 8.0, 1.25 M Gdn HCl, and 1 mM EDTA and ad-
justed to the appropriate pH with 1 M KOH, if necessary (renatur-
ation buffer). In a 1.5 mL-Eppendorf tube, 900
lL of renaturation
buffer was mixed with 100 L of reduced lysozyme solution
l
(10 mg/mL) to give a 10-fold dilution and a final concentration of
1 mg/mL protein and 1.7 M Gdn HCl. Subsequently, at specific
intervals, 10
diluted with 90
or 0.1 M Tris–HCl at pH 8.0, 1.25 M Gdn HCl, and 1 mM EDTA)
lL aliquots were withdrawn and each aliquots was
l
L of buffer (0.1 M bis tris propane–HCl at pH 7.0