Journal of the American Chemical Society
Communication
desired reaction hardly took place, probably due to the steric
hindrance of the tertiary C−H bond in 2k (entry 11).
In summary, we have developed an enantioselective
semipinacol rearrangement initiated by Pd(II)-catalyzed direct
allylic C−H activation to give chiral spirocyclic indenes. Our
results indicate that a chiral Brønsted acid strategy could be a
valuable method for the development of asymmetric Pd(II)-
catalyzed oxidative reactions of alkenes through direct allylic
C−H activation. Efforts toward this direction as well as a de-
tailed understanding of the mechanism are currently underway
in our laboratories.
An intermolecular kinetic isotopic effect experiment (KIE)
study with substrate 2a-d2 disclosed a primary kinetic isotopic
effect for this reaction (see Supporting Information for more
details), which is clearly in support of our above hypothesis that
an allylic C−H bond is broken prior to or during the rate-
limiting step (eq 1). In contrast, use of the more reactive cata-
lyst Pd(CH3CN)4(BF4)2 did not result in an observable kinetic
isotope effect (kH/kD = 1.02−1.03). The data in this case are
consistent with a mechanism in which alkene coordination to
the metal center depletes electron density in the alkene through
ligand to metal electron donation; rearrangement followed by
fast β-hydride elimination then furnishes the observed product.
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental procedures, details on condition screening, and
spectral data for all new compounds. This material is available
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
Financial support from Montana State University is gratefully
acknowledged.
■
REFERENCES
■
Based on the above experimental results, a tentative mech-
anism was proposed (Scheme 1). First, mixing of Pd(OAc)2
(1) For recent reviews: (a) Beccalli, E. M.; Broggini, G.; Martinelli,
M.; Sottocornola, S. Chem. Rev. 2007, 107, 5318. (b) Popp, B. V.;
Stahl, S. S. Top. Organomet. Chem. 2006, 22, 149. (c) Jensen, T.;
Fristrup, P. Chem.Eur. J. 2009, 15, 9632 and references therein.
(2) (a) Chen, M. S.; White, C. W. J. Am. Chem. Soc. 2004, 126, 1346.
(b) Chen, M. S.; Prabagaran, N.; Labenz, N. A.; White, C. W. J. Am.
Chem. Soc. 2005, 127, 6970. (c) Fraunhoffer, K. J.; Prabagaran, N.;
Sirois, L. E.; White, C. W. J. Am. Chem. Soc. 2006, 128, 9032.
(d) Delcamp, J. H.; White, C. W. J. Am. Chem. Soc. 2006, 128, 15076.
(e) Covell, D. J.; White, C. W. Angew. Chem., Int. Ed. 2008, 47, 6448.
(f) Vermeulen, N.; Delcamp, J. H.; White, C. W. J. Am. Chem. Soc.
2010, 132, 11323. Amination: (g) Reed, S. A.; White, C. W. J. Am.
Chem. Soc. 2008, 130, 3316. (h) Fraunhoffer, K. J.; White, C. W. J. Am.
Chem. Soc. 2007, 129, 7274. (i) Rice, G. T.; White, C. W. J. Am. Chem.
Soc. 2009, 130, 11707. (j) Reed, S. A.; Mazzotti, A. R.; White, C. W.
J. Am. Chem. Soc. 2009, 130, 11701. (k) Young, A. J.; White, C. W.
J. Am. Chem. Soc. 2008, 130, 14090.
Scheme 1. Proposed Reaction Mechanism
(3) (a) Mitsudome, T.; Umetani, T.; Nosaka, N.; Mori, K.; Mizugaki,
T.; Ebitani, K.; Kaneda, K. Angew. Chem., Int. Ed. 2006, 45, 481.
́
(b) Pilarski, L. T.; Selander, N.; Bose, D.; Szabo, K. J. Org. Lett. 2009,
̈
and the phosphoric acid additive produces an active Pd(II)
species via acid-catalyzed ligand exchange. Coordination of the
substrate then forms a diastereomeric mixture of equilibrat-
ing alkene complexes. These complexes subsequently undergo
rate-limiting C−H insertion, possibly through proton abstrac-
tion by a ligated acetate ligand19 to produce diastereomeric
π-allylpalladium intermediates.20 Here, the chiral phosphoric
acid may possibly serve as a counteranion/anionic ligand as
proposed by List et al. in a Pd(0)-catalyzed α-allylation of
aldehydes.21 The transient π-allylpalladium intermediate
subsequently undergoes semipinacol ring expansion in acco-
rdance with literature precedent22 to generate the observed
product and a Pd(0) species, which is reoxidized to Pd(II)
by BQ. Unfortunately, our efforts to observe the postulated
π-allylpalladium intermediate were unsuccessful, and we
cannot conclusively rule out the possibility of an alternative
reaction mechanism at this time.23,24
11, 5518. (c) Lin, B.-L.; Labinger, J. A.; Bercaw, J. E. Can. J. Chem.
2009, 87, 264. (d) Thiery, E.; Aouf, C.; Belloy, J.; Harakat, D.; Le Bras,
J.; Muzart, J. J. Org. Chem. 2010, 75, 1771. (e) Henderson, W. H.;
Check, C. T.; Proust, N.; Stambuli, J. P. Org. Lett. 2010, 12, 824.
(f) Campbell, A. N.; White, P. B.; Guzei, I. A.; Stahl, S. S. J. Am. Chem.
Soc. 2010, 132, 15116. Amination: (g) Larock, R. C.; Hightower,
T. R.; Hasvold, L. A.; Peterson, K. P. J. Org. Chem. 1996, 61, 3584.
(h) Liu, G.; Yin, G.; Wu, L. Angew. Chem., Int. Ed. 2008, 47, 4733.
(i) Nahra, F.; Liron, F.; Prestat, G.; Mealli, C.; Messaoudi, A.; Poli, G.
Chem.Eur. J. 2009, 15, 11078. (j) Shimizu, Y.; Obora, Y.; Ishii, Y.
Org. Lett. 2010, 12, 1372. (k) Yin, G.; Wu, Y.; Liu, G. J. Am. Chem. Soc.
2010, 132, 11978. Alkylation: (l) Lin, S.; Song, C.-X.; Cai, G.-X.;
Wang, W.-H.; Shi, Z.-J. J. Am. Chem. Soc. 2008, 130, 12901.
(4) (a) El-Qisiari, A. K.; Qaseer, H. A.; Henry, P. M. Tetrahedron Lett.
2002, 43, 4229. (b) Yang, H.; Khan, A. K.; Nicholas, K. M. J. Mol.
Catal. 1994, 91, 319. (c) Kozitsyna, N. Yu.; Vargaftik, M. N.; Moiseev,
I. I. J. Organomet. Chem. 2000, 593−594, 274.
(5) (a) Albel, U.; Simon, W.; Eckard, P.; Hansske, F. G. Bioorg. Med.
Chem. Lett. 2006, 16, 3292. For two enantioselective total syntheses:
3617
dx.doi.org/10.1021/ja2102407 | J. Am. Chem. Soc. 2012, 134, 3615−3618