(s, 9H). ESI-Ms: 740. IR (CH2Cl2, cm-1): n (C C) 2091, 2209.
C40H36N2Pt: Calcd. C, 64.94; H, 4.90; N, 3.79. Found: C, 64.42;
H, 4.86; N, 3.72%.
17 Y. Sano, A. Onoda and T. Hayashi, Chem. Commun., 2011, 47, 8229–
8231.
18 H. Wolpher, M. Borgstro¨m, L. Hammarstro¨m, J. Bergquist, V. Sund-
˚
stro¨m, S. Styring, L. Sun and B. Akermark, Inorg. Chem. Commun.,
2003, 6, 989–991.
˚
Photocatalysis
19 S. Ott, M. Kritikos, B. Akermark and L. Sun, Angew. Chem. Int. Ed.,
2003, 42, 3285–3288.
20 S. Ott, M. Borgstro¨m, M. Kritikos, R. Lomoth, J. Bergquist, B.
In a typical experiment, 6 mL CH3CN/CH3OH/H2O (v/v/v =
3/2/1) solution with the complex (3.3 ¥ 10-4 M, 2 mmol) and
HOAc (0.01 M) were added to a Schlenk tube. The frozen solution
was evacuated and nitrogen gas injected. After the suspension was
equilibrated to room temperature, 60 mL CH4 was injected as
internal standard for quantitative GC analysis. The sample was
then irradiated under a 500 W high-pressure Hanovia mercury
lamp and a glass filter was employed to cut off light with a
wavelength below 400 nm. The photoproduct H2 generated from
the systems was measured using a GC-14B (Shimadzu) using
˚
Akermark, L. Hammarstro¨m and L. Sun, Inorg. Chem., 2004, 43, 4683–
4692.
21 L.-C. Song, M.-Y. Tang, F.-H. Su and Q.-M. Hu, Angew. Chem. Int.
Ed., 2006, 45, 1130–1133.
22 J. Ekstro¨m, M. Abrahamsson, C. Olson, J. Bergquist, F. B. Kaynak, L.
˚
Eriksson, L. Sun, H.-C. Becker, B. Akermark, L. Hammarstro¨m and
S. Ott, Dalton Trans., 2006, 4599–4606.
˚
23 X. Li, M. Wang, S. Zhang, J. Pan, Y. Na, J Liu, B. Akermark and L.
Sun, J. Phys. Chem. B., 2008, 112, 8918–8202.
24 A. M. Kluwer, R. Kapre, F. Hartl, M. Lutz, A. L. Spek, A. M. Brouwer,
P. W. N. M. van Leeuwen and J. N. H. Reek, Proc. Natl. Acad. Sci. USA,
2009, 106, 10460–10465.
˚
nitrogen as the carrier gas with a molecular sieve 5 A column (30
25 A. P. S. Samuel, D. T. Co, C. L. Stern and M. R. Wasielewski, J. Am.
Chem. Soc., 2010, 132, 8813–8815.
26 W.-G. Wang, F. Wang, H.-Y. Wang, G. Si, C.-H. Tung and L.-Z. Wu,
Chem. Asian J., 2010, 5, 1796–1803.
27 H.-Y. Wang, G. Si, W.-N. Cao, W.-G. Wang, Z.-J. Li, F. Wang, C.-H.
Tung and L.-Z. Wu, Chem. Commun, 2011, 47, 8406–8408.
28 V. W.-W. Yam, Acc. Chem. Res., 2002, 35, 555–563.
29 S. W. Lai and C. M. Che, Top. Curr. Chem., 2004, 241, 27–63.
30 S. Chakraborty, T. J. Wadas, H. Hester, R. Schmehl and R. Eisenberg,
Inorg. Chem., 2005, 44, 6865–6878.
m ¥ 0.53 mm) and thermal conductivity detector. The response
factor for H2/CH4 was 3.0 under experimental conditions, which
were established by calibration with known amounts of H2 and
CH4, and determined before and after a series of measurements.
Acknowledgements
We are grateful for financial support from the Ministry of Science
and Technology of China (2009CB22008, and 2007CB808004), the
National Science Foundation of China (50973125, 21090343 and
20732007), Solar Energy Initiative of the Knowledge Innovation
Program of the Chinese Academy of Sciences (KGCXZ-YW-389),
and the Bureau for Basic Research of the Chinese Academy of
Sciences.
31 Q.-Z. Yang, L.-Z. Wu, Z.-X. Wu, L.-P. Zhang and C.-H. Tung, Inorg.
Chem., 2002, 41, 5653–5655.
32 X. Han, L.-Z. Wu, G. Si, J. Pan, Q.-Z. Yang, L.-P. Zhang and C.-H.
Tung, Chem. Eur. J., 2007, 13, 1231–1239.
33 J. Ding, D. Pan, C.-H. Tung and L.-Z. Wu, Inorg. Chem., 2008, 47,
5099–5106.
34 X.-Y. Liu, X. Han, L.-P. Zhang, C.-H. Tung and L.-Z. Wu, Phys. Chem.
Chem. Phys., 2010, 12, 13026–13033.
35 K. Feng, R.-Y. Zhang, L.-Z. Wu, B. Tu, M.-L. Peng, L.-P. Zhang, D.
Zhao and C.-H. Tung, J. Am. Chem. Soc., 2006, 128, 14685–14690.
36 D. Zhang, L.-Z. Wu, L. Zhou, X. Han, Q.-Z. Yang, L.-P. Zhang and
C.-H. Tung, J. Am. Chem. Soc., 2004, 126, 3440–3441.
37 D.-H. Wang, M.-L. Peng, Y. Han, B. Chen, C.-H. Tung and L.-Z. Wu,
Inorg. Chem., 2009, 48, 9995–9997.
Notes and references
1 A. J. Esswein and D. G. Nocera, Chem. Rev., 2007, 107, 4022–
4047.
38 R. Narayana-Prabhu and R. H. Schmehl, Inorg. Chem., 2006, 45, 4319–
4321.
2 A. Magnuson, M. Anderlund, O. Johansson, P. Lindblad, R. Lomoth,
T. Polivka, S. Ott, K. Stensjo¨, S. Styring, V. Sundstro¨m and L.
Hammarstro¨m, Acc. Chem. Res., 2009, 42, 1899–1909.
3 M. Frey, ChemBioChem, 2002, 3, 153–160.
4 Y. Nicolet, C. Piras, P. Legrand, C. E. Hatchikian and J. C. Fontecilla-
Camps, Structure, 1999, 7, 13–23.
5 J. W. Peters, W. N. Lanzilotta, B. J. Lemon and L. C. Seefeldt, Science,
1998, 282, 1853–1858.
6 F. Gloaguen and T. B. Rauchfuss, Chem. Soc. Rev., 2009, 38, 100–108.
7 M. Y. Darensbourg, E. J. Lyon and J. J. Smee, Coord. Chem. Rev., 2000,
206–207, 533–561.
8 D. J. Evans and C. J. Pickett, Chem. Soc. Rev., 2003, 32, 268–
275.
9 R. Lomoth and S. Ott, Dalton Trans., 2009, 9952–9959.
10 M. Wang and L. Sun, ChemSusChem, 2010, 3, 551–554.
11 M. Wang, Y. Na, M. Gorlov and L. Sun, Dalton Trans., 2009, 6458–
6467.
39 P. Du, K. Knowles and R. Eisenberg, J. Am. Chem. Soc., 2008, 130,
12576–12577.
40 P. Du, J. Schneider, P. Jarosz and R. Eisenberg, J. Am. Chem. Soc., 2006,
128, 7726–7727.
41 J. Ding, K. Feng, C.-H. Tung and L.-Z. Wu, J. Phys. Chem. C., 2011,
115, 833–839.
42 G. Si, L.-Z. Wu, W.-G. Wang, J. Ding, X.-F. Shan, Y.-P. Zhao, C.-H.
Tung and M. Xu, Tetrahedron Lett., 2007, 48, 4775–4779.
43 G. Si, W.-G. Wang, H.-Y. Wang, C.-H. Tung and L.-Z. Wu, Inorg.
Chem., 2008, 47, 8101–8111.
44 J.-F. Capon, F. Gloaguen, F. Y. Pe`tillon, P. Schollhammer and J.
Talarmin, Coord. Chem. Rev., 2009, 253, 1476–1494.
45 S. J. Borg, T. Behrsing, S. P. Best, M. Razavet, X. Liu and C. J. Pickett,
J. Am. Chem. Soc., 2004, 126, 16988–16999.
46 R. Mejia-Rodriguez, D. Chong, J. H. Reibenspies, M. P. Soriaga and
M. Y. Darensbourg, J. Am. Chem. Soc., 2004, 126, 12004–12014.
47 W.-G. Wang, H.-Y. Wang, G. Si, C.-H. Tung and L.-Z. Wu, Dalton
Trans., 2009, 2712–2720.
48 D. Rehm and A. Weller, Isr. J. Chem., 1970, 8, 259–271.
49 C. Greco, M. Bruschi, L. D. Gioia and U. Ryde, Inorg. Chem., 2007,
46, 5911–5921.
50 W. Lubitz, E. J. Reijerse and J. Messinger, Energy Environ. Sci., 2008,
1, 15–31.
51 D. D. Perrin and W. L. F. Armarego, Purification of Laboratory
Chemicals, 3rd ed.; Pergamon Press: New York, 1988.
12 Y. Na, J. Pan, M. Wang and L. Sun, Inorg. Chem., 2007, 46, 3813–
3815.
˚
13 Y. Na, M. Wang, J. Pan, P. Zhang, B. Akermark and L. Sun, Inorg.
Chem., 2008, 47, 2805–2810.
14 D. Streich, Y. Astuti, M. Orlandi, L. Schwartz, R. Lomoth, L.
Hammarstro¨m and S. Ott, Chem. Eur. J., 2010, 16, 60–63.
15 H.-Y. Wang, W.-G. Wang, G. Si, F. Wang, C.-H. Tung and L.-Z. Wu,
Langmiur, 2010, 26, 9766–9771.
16 F. Wang, W.-G. Wang, X.-J. Wang, H.-Y. Wang, C.-H. Tung and L.-Z.
Wu, Angew. Chem. Int. Ed, 2011, 50, 3193–3197.
2426 | Dalton Trans., 2012, 41, 2420–2426
This journal is
The Royal Society of Chemistry 2012
©