Full Paper
1718, 1276, 1028 cm–1. 1H NMR (400 MHz, CDCl3): δ = 1.15–1.27 (m,
12 H, CH3CH2O), 2.75–2.88 (m, 2 H, CHCH2), 3.05–3.13 (m, 2 H,
CH2CH), 3.69 (s, 6 H, CH3O), 3.78 (s, 6 H, CH3O), 3.93–4.15 (m, 10 H),
4.31–4.44 (m, 2 H, CHP), 4.88 (AB system, J = 12.3 Hz, 2 H, OCH2Ph),
4.99 (AB system, J = 12.3 Hz, 2 H, OCH2Ph), 5.67 (d, J = 10.1 Hz, 2
H, NH), 6.44 (s, 2 H, Harom), 6.73 (s, 2 H, Harom), 7.13–7.31 (m, 10 H,
Harom) ppm. 13C NMR (100 MHz, CDCl3): δ = 16.4 (d, J = 5.9 Hz,
CH3CH2O), 16.5 (d, J = 5.6 Hz, CH3CH2O), 32.2 (d, J = 4.3 Hz, CH2CH),
35.2 (CH2), 47.9 (d, J = 155.6 Hz, CHP), 55.9 (CH3O), 56.0 (CH3O), 62.6
(d, J = 6.4 Hz, OCH2CH3), 62.8 (d, J = 7.2 Hz, OCH2CH3), 66.9
(OCH2Ph), 112.9, 113.3, 127.2 (d, J = 13.8 Hz), 128.0, 128.2, 128.5,
131.2, 136.5, 147.3, 147.7, 156.1 (d, J = 6.0 Hz, C=O) ppm. 31P NMR
(162 MHz, CDCl3): δ = 24.60 ppm. HRMS (ESI): calcd. for
C45H61N2O14P2 [M + H]+ 915.3598; found 915.3577.
CTQ2010-17436), and the Gobierno de Aragón-FSE (research
group E40).
Keywords: Phosphoisoquinolines · Pictet–Spengler reaction ·
Chiral HPLC separation · Cyclization · Aldehydes · Chiral
resolution · Phosphorylation
[1] S. Klutchko, C. J. Blankley, R. W. Fleming, J. M. Hinkley, A. E. Werner, I.
Nordin, A. Holmes, M. L. Hoefle, D. M. Cohen, A. D. Essenburg, H. R.
Kaplan, J. Med. Chem. 1986, 29, 1953–1961.
[2] a) H. Wang, L. Peng, M. Zhao, J. Liu, X. Zhang, Y. Wang, J. Wu, L. Li, S.
Peng, Bioorg. Med. Chem. 2011, 19, 871–882; b) X. Zhang, W. Wang, S.
Cheng, M. Zhao, M. Zheng, H. W. Chang, J. Wu, S. Peng, Bioorg. Med.
Chem. 2010, 18, 1536–1554; c) S. Cheng, X. Zhang, W. Wang, M. Zhao,
M. Zheng, H. W. Chang, J. Wu, S. Peng, Eur. J. Med. Chem. 2009, 44, 4904–
5919; d) M. Zheng, X. Zhang, M. Zhao, H. W. Chang, W. Wang, Y. Wang,
S. Peng, Bioorg. Med. Chem. 2008, 16, 9574–9587.
[3] A. Ambo, H. Ohkatsu, M. Minamizawa, H. Watanabe, S. Sugawara, K. Nitta,
Y. Tsuda, Y. Okada, Y. Sasaki, Bioorg. Med. Chem. Lett. 2012, 22, 2192–
2194.
[4] H. Matter, M. Schudok, W. Schwab, W. Thorwart, D. Barbier, G. Billen, B.
Haase, B. Neises, K.-U. Weithmann, T. Wollmann, Bioorg. Med. Chem.
2002, 10, 3529–3544.
[5] X. K. Chen, F. G. Njoroge, J. Pichardo, A. Prongay, N. Butkiewicz, N. Yao,
V. Madison, V. Girijavallabhan, J. Med. Chem. 2006, 49, 567–574.
[6] R. Noel, X. Song, Y. Shin, S. Banerjee, D. Kojetin, L. Lin, C. H. Ruiz, M. D.
Cameron, T. P. Burris, T. M. Kamenecka, Bioorg. Med. Chem. Lett. 2012, 22,
3739–3742.
[7] X. Zhang, J. Zhang, L. Zhang, J. Feng, Y. Xu, Y. Yuan, H. Fang, W. Xu,
Bioorg. Med. Chem. 2011, 19, 6015–6025.
[8] C. Solanas, B. G. de la Torre, M. Fernández-Reyes, C. M. Santiveri, M. A.
Jiménez, L. Rivas, A. I. Jiménez, D. Andreu, C. Cativiela, J. Med. Chem.
2009, 52, 664–674.
Diethyl (6,7-Dimethoxy-1,2,3,4-tetrahydroisoquinoline-3-
yl)phosphonate (7d). Method A: Formaldehyde (77 mg, 71 μL,
0.95 mmol, 37 % aqueous solution) was added dropwise to a solu-
tion of compound 5d (200 mg, 0.63 mmol) and 2
N HCl (0.32 mL,
0.64 mmol) in EtOH/water (1:0.1 mL). The solution was stirred at
room temperature for 32 h. The reaction mixture was concentrated
under reduced pressure, diluted with dichloromethane (20 mL), and
neutralized with saturated aqueous NaHCO3 (20 mL). The organic
layer was separated, dried with anhydrous MgSO4, filtered, and con-
centrated in vacuo. The residue was purified by column chromatog-
raphy with CH2Cl2/iPrOH (90:10) to give 7d (207 mg, 100 %) as a
yellow oil. IR (neat): ν = 3297, 1244, 1226, 965 cm–1 1H NMR
.
˜
(400 MHz, CDCl3): δ = 1.34 (t, J = 7.1 Hz, 3 H, OCH2CH3), 1.34 (t, J =
7.1 Hz, 3 H, OCH2CH3), 1.89 (br. s, 1 H, NH), 2.76–3.00 (m, 2 H), 3.24
(ddd, J = 15.8, 11.5, 4.5 Hz, 1 H), 3.81 (s, 3 H, OCH3), 3.82 (s, 3 H,
OCH3), 3.96 (s, 2 H), 4.14–4.23 (m, 4 H, OCH2CH3), 6.49 (s, 1 H, Harom),
6.57 (s, 1 H, Harom) ppm. 13C NMR (100 MHz, CDCl3): δ = 16.6 (d, J =
5.6 Hz, OCH2CH3), 28.4, 48.1 (d, J = 16.8 Hz), 51.2 (d, J = 161.8 Hz),
55.9 (OCH3), 56.0 (OCH3), 62.5 (d, J = 6.9 Hz, OCH2CH3), 62.6 (d, J =
7.0 Hz, OCH2CH3), 109.0, 111.8 (d, J = 1.8 Hz), 125.0 (d, J = 15.2 Hz),
127.0 (d, J = 2.0 Hz), 147.6, 147.7 (d, J = 1.3 Hz) ppm. 31P NMR
(162 MHz, CDCl3): δ = 26.27 ppm. HRMS (ESI): calcd. for C15H25NO5P
[M + H]+ 330.1470; found 330.1460. Method B: Trifluoroacetic acid
(1.44 g, 1 mL, 12.63 mmol) was added dropwise to a solution of
compound 5d (200 mg, 0.63 mmol) in dichloromethane (3.2 mL)
and formaldehyde (77 mg, 71 μL, 0.95 mmol, 37 % aqueous solu-
tion) at room temperature. The solution was stirred at room temper-
ature for 5 h. Then, the workup was identically to that before to
obtain 7d in quantitative yield as a yellow oil.
[9] a) G. Balboni, S. Salvadori, C. Trapella, B. I. Knapp, J. M. Bidlack, L. H.
Lazarus, X. Peng, J. L. Neumeyer, ACS Chem. Neurosci. 2010, 1, 155–164;
b) G. Tóth, E. Ioja, C. Tömböly, S. Ballet, D. Tourwé, A. Péter, T. Martinek,
N. N. Chung, P. W. Schiller, S. Benyhe, A. Borsodi, J. Med. Chem. 2007, 50,
328–333; c) J. L. Neumeyer, X. Peng, B. I. Knapp, J. M. Bidlack, L. H. Laz-
arus, S. Salvadori, C. Trapella, G. Balboni, J. Med. Chem. 2006, 49, 5640–
5643; d) B. S. Vig, M. Q. Zheng, T. F. Murray, J. V. Aldrich, J. Med. Chem.
2003, 46, 4002–4008.
[10] X. Fang, Y. Yin, Y. T. Chen, L. Yao, B. Wang, M. D. Cameron, L. Lin, S. Khan,
C. Ruiz, T. Schröter, W. Grant, A. Weiser, J. Pocas, A. Pachori, S. Schürer, P.
LoGrasso, Y. Feng, J. Med. Chem. 2010, 53, 5727–5737.
[11] a) B. K. Peters, S. K. Chakka, T. Naicker, G. E. M. Maguire, H. G. Kruger,
P. G. Andersson, T. Govender, Tetrahedron: Asymmetry 2010, 21, 679–687;
b) N. Toselli, R. Fortrie, D. Martin, G. Buono, Tetrahedron: Asymmetry 2010,
21, 1238–1245; c) S. K. Chakka, B. K. Peters, P. G. Andersson, G. E. M.
Maguire, H. G. Kruger, T. Govender, Tetrahedron: Asymmetry 2010, 21,
2295–2301; d) C. Blanc, F. Agbossou-Niedercorn, Tetrahedron: Asymmetry
2004, 15, 757–761; e) C. Blanc, J. Hannedouche, F. Agbossou-Niedercorn,
Tetrahedron Lett. 2003, 44, 6469–6473; f) K. Shibatomi, Y. Uozumi, Tetra-
hedron: Asymmetry 2002, 13, 1769–1772; g) C. Pasquier, L. Pélinski, J.
Brocard, A. Mortreux, F. Agbossou-Niedercorn, Tetrahedron Lett. 2001, 42,
2809–2812.
(6,7-Dihydroxy-1,2,3,4-tetrahydroisoquinolin-3-yl)phosphonic
Acid (2d): Compound 7d (400 mg, 1.2 mmol) was dissolved in 48 %
HBr (5 mL) and refluxed for 3 h. The volatiles were evaporated under
reduced pressure, and the product was precipitated from water to
afford 2d (242 mg, 81 %) as a white solid. M.p. 275–277 °C. IR (neat):
ν = 3175, 1284, 1133 cm–1 1H NMR (400 MHz, D2O, K2CO3): δ =
.
˜
2.97–3.10 (m, 2 H), 3.18–3.28 (m, 1 H), 4.22 (s, 2 H), 6.64 (s, 1 H,
Harom), 6.73 (s, 1 H, Harom) ppm. 13C NMR (100 MHz, D2O, K2CO3):
δ = 26.8, 45.4 (d, J = 6.7 Hz), 53.2 (d, J = 132.0 Hz), 113.4, 115.6,
119.2, 124.1 (d, J = 11.1 Hz), 143.4, 144.4 ppm. 31P NMR (162 MHz,
D2O, K2CO3): δ = 9.99 ppm. HRMS (ESI): calcd. for C9H13NO5P [M +
H]+ 246.0531; found 246.0527.
[12] G. B. Jones, S. B. Heaton, B. J. Chapman, M. Guzel, Tetrahedron: Asymmetry
1997, 8, 3625–3636.
[13] a) A. Pictet, T. Spengler, Ber. Dtsch. Chem. Ges. 1911, 44, 2030–2036; b)
E. D. Cox, J. M. Cook, Chem. Rev. 1995, 95, 1797–1842; c) E. L. Larghi, M.
Amongero, A. B. J. Bracca, T. S. Kaufman, ARKIVOC (Gainesville, FL, U.S.)
2005, 98–153; d) S. W. Youn, Org. Prep. Proced. Int. 2006, 38, 505–591; e)
J. Stöckigt, A. P. Antonchick, F. Wu, H. Waldmann, Angew. Chem. Int. Ed.
2011, 50, 8538–8564; Angew. Chem. 2011, 123, 8692.
Acknowledgments
[14] For representative examples, see: a) A. P. Kozikowski, D. Ma, Y.-P. Pang, P.
Shum, V. Likic, P. K. Mishra, S. Macura, A. Basu, J. S. Lazo, R. G. Ball, J. Am.
Chem. Soc. 1993, 115, 3957–3965; b) N. Cabedo, N. El Aouad, I. Beren-
guer, M. Zamora, M. C. Ramírez de Arellano, F. Suvire, A. Bermejo, D.
The authors thank Consejo Nacional de Ciencia y Tecnología
(CONACYT) for financial support through projects 181816 and
248868, the Ministerio de Ciencia e Innovación – FEDER (grant
Eur. J. Org. Chem. 2016, 2711–2719
2718
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim