10.1002/anie.201801894
Angewandte Chemie International Edition
COMMUNICATION
Chem. 2017, 129, 7272; m) R. Li, G. Dong, Angew. Chem. Int. Ed. 2018,
57, 1697; Angew. Chem. 2018, 130, 1713.
In summary, we have developed a new type of Pd/NBE-
catalyzed threefold domino reaction, wherein ortho-indole aryl
iodides and tethered bromoalkyl alkynes were used to build up
spiroindolenine-containing pentacyclic scaffolds through controlled
formation of three C-C bonds in a single step. Notably, this new
protocol, using NBE as a transient mediator, was featured by
terminating the trisfunctionalization domino process with indole
dearomatization, and represents a rare example of transition-
metal-catalyzed intermolecular reactions for the rapid assembly
of polycyclic frameworks from easily accessible starting materials.
[6]
[7]
a) K. M. Gericke, D. I. Chai, M. Lautens, Tetrahedron 2008, 64, 6002; b)
V. Aureggi, M. Davoust, K. M. Gericke, M. Lautens, Synlett 2009, 1004.
For a book, see: a) Asymmetric Dearomatization Reactions (Ed.: S.-L.
You), Wiley-VCH, Weinheim, 2016; For reviews, see: b) E. P. Kündig, A.
Rape, Top. Organomet. Chem. 2004, 7, 95; c) S. P. Roche, J. Porco Jr,
Angew. Chem. Int. Ed. 2011, 50, 4068; Angew. Chem. 2011, 123,
4154; d) C. Zhuo, W. Zhang, S.-L. You, Angew. Chem. Int. Ed. 2012,
51, 12662; Angew. Chem. 2012, 124, 12834; e) C. Zhuo, C. Zheng, S.-
L. You, Acc. Chem. Res. 2014, 47, 2558; f) T. Nemoto, Y. Hamada,
Synlett. 2016, 27, 2301; g) O’Brien, R. J. K. Taylor, W. P. Unsworth,
Chem. Eur. J. 2016, 22, 2856.
[8]
For typical examples, see: a) B. M. Trost, J. Quancard, J. Am. Chem.
Soc. 2006, 128, 6314; b) J. García-Fortanet, F. Kessler, S. L. Buchwald,
J. Am. Chem. Soc. 2009, 131, 6676; c) R. B. Bedford, C. P. Butts, M. F.
Haddow, R. Osborne, R. F. Sankey, Chem. Commun. 2009, 4832; d) Q.
Wu, H. He, W. Liu, S.-L. You, J. Am. Chem. Soc. 2010, 132, 11418; e)
T. Nemoto, Y. Ishige, M. Yoshida, Y. Kohno, Y. Hamada, Org. Lett.
2010, 12, 5020; f) Q. Wu, W. Liu, C. Zhuo, Z. Rong, K. Ye, S.-L. You,
Angew. Chem. Int. Ed. 2011, 50, 4455; Angew. Chem. 2011, 123,
4547; g) S. Rousseaux, J. García-Fortanet, M. A. Del Aguila Sanchez,
S. L. Buchwald, J. Am. Chem. Soc. 2011, 133, 9282; h) Y. Zhu, V. H.
Rawal, J. Am. Chem. Soc. 2012, 134, 111; i) C. Zhuo, S.-L. You,
Angew. Chem. Int. Ed. 2013, 52, 10056; Angew. Chem. 2013, 125,
10240; j) B. M. Trost, V. Ehmke, B. M. O’Keefe, D. A. Bringley, J. Am.
Chem. Soc. 2014, 136, 8213; k) C. Zhuo, Y. Zhou, S.-L. You, J. Am.
Chem. Soc. 2014, 136, 6590; l) L. Yang, H. Zheng, L. Luo, J. Nan, J.
Liu, Y. Wang, X. Luan, J. Am. Chem. Soc. 2015, 137, 4876; m) R. Xu,
P. Yang, H. Tu, S. Wang, S.-L. You, Angew. Chem. Int. Ed. 2016,
55,15137; Angew. Chem. 2016, 128, 15361.
Acknowledgements
Financial support was provided by the Key Science and
Technology Innovation Team of Shaanxi Province (2017KCT-
37), the National Science Foundation of China (21672169), and
the Northwest University (YYB17007).
Keywords: C-H activation • dearomatization • norbornene •
domino reactions • palladium
[1]
[2]
Domino Reactions: Concepts for Efficient Organic Synthesis (Ed.: L. F.
Tietze), Wiley-VCH, Weinheim, 2014.
For reviews, see: a) M. Catellani, E. Motti, N. Della Ca’, Acc. Chem.
Res. 2008, 41, 1512; b) A. Martins, B. Mariampillai, M. Lautens, Top.
Curr. Chem. 2010, 292, 1; c) J. Ye, M. Lautens, Nat. Chem. 2015, 7,
863; d) N. Della Ca’, M. Fontana, E. Motti, M. Catellani, Acc. Chem.
Res. 2016, 49, 1389.
[9]
For recent examples of Pd(0)-catalyzed arylative dearomatization of
indoles, see: a) R. B. Bedford, N. Fey, M. F. Haddow, R. F. Sankey,
Chem. Commun. 2011, 47, 3649; b) K. Wu, L. Dai, S.-L. You, Org. Lett.
2012, 14, 3772; c) D. A. Petrone, A. Yen, N. Zeidan, M. Lautens, Org.
Lett. 2015, 17, 4838; d) C. Shen, R. Liu, R. Fan, Y. Li, T. Xu, J. Gao, Y.
Jia, J. Am. Chem. Soc. 2015, 137,4936; e) R. Liu, Y. Wang, Y. Li, B.
Huang, R. Liang, Y. Jia, Angew. Chem. Int. Ed. 2017, 56, 7475; Angew.
Chem. 2017, 129, 7583.
[3]
[4]
[5]
For selected examples, see: a) M. Catellani, F. Frignani, A. Rangoni,
Angew. Chem. Int. Ed. Engl. 1997, 36, 119; Angew. Chem. 1997, 109,
142; b) M. Catellani, E. Motti, M. Minari, Chem. Commun. 2000, 157; c) M.
Catellani, E. Motti, S. Baratta, Org. Lett. 2001, 3, 3611; d) F. Faccini, E.
Motti, M. Catellani, J. Am. Chem. Soc. 2004, 126, 78; e) C. Bressy, D.
Alberico, M. Lautens, J. Am. Chem. Soc. 2005, 127, 13148; f) R.
Ferraccioli, D. Carenzi, E. Motti, M. Catellani, J. Am. Chem. Soc. 2006,
128, 722.
[10] a) J. Nan, Z. Zuo, L. Luo, L. Bai, H. Zheng, Y. Yuan, J. Liu, X. Luan, Y.
Wang, J. Am. Chem. Soc. 2013, 135, 17306; b) A. Seoane, N.
Casanova, N. Quiñones, J. L. Mascareñas, M. Gulías, J. Am. Chem.
Soc. 2014, 136, 7607; c) S. Kujawa, D. Best, D. J. Burns, H. W. Lam,
Chem. Eur. J. 2014, 20, 8599; d) J. Zheng, S.-B. Wang, C. Zheng, S.-L.
You, J. Am. Chem. Soc. 2015, 137, 4880.
For selected examples, see: a) M. Lautens, S. Piguel, Angew. Chem. Int.
Ed. 2000, 39, 1045; Angew. Chem. 2000, 112, 1087; b) C. Bressy, D.
Alberico, M. Lautens, J. Am. Chem. Soc. 2005, 127, 13148; c) B.
Mariampillai, D. Alberico, V. Bidau, M. Lautens, J. Am. Chem. Soc. 2006,
128, 14436; d) K. M. Gericke, D. I. Chai, N. Bieler, M. Lautens, Angew.
Chem. Int. Ed. 2009, 48, 1447; Angew. Chem. 2009, 121, 1475; e) H.
Liu, M. El-Salfiti, M. Lautens, Angew. Chem. Int. Ed. 2012, 51, 9846;
Angew. Chem. 2012, 124, 9984.
[11] a) M. Catellani, F. Cugini, G. Bocelli, J. Organomet. Chem. 1999, 584,
63; b) M. Larraufie, G. Maestri, A. Beaume, É. Derat, C. Ollivier, L.
Fensterbank, C. Courillon, E. Lacôte, M. Catellani, M. Malacria, Angew.
Chem. Int. Ed. 2011, 50, 12253; Angew. Chem. 2011, 123, 12461; c) Z.
Zuo, H. Wang, L. Fan, J. Liu, Y. Wang, X. Luan, Angew. Chem. Int. Ed.
2017, 56, 2767; Angew. Chem. 2017, 129, 2811.
For recent examples, see: a) X. Sui, R. Zhu, G. Li, X. Ma, Z. Gu, J. Am.
Chem. Soc. 2013, 135, 9318; b) Z. Dong, G. Dong, J. Am. Chem. Soc.
2013, 135, 18350; c) H. Zhang, P. Chen, G. Liu, Angew. Chem. Int. Ed.
2014, 53, 10174; Angew. Chem. 2014, 126, 10338; d) P. Zhou, Y. Ye, C.
Liu, L. Zhao, J. Hou, D. Chen, Q. Tang, A. Wang, J. Zhang, Q. Huang, P. Xu,
Y. Liang, ACS Catal. 2015, 5, 4927; e) Z. Dong, J. Wang, Z. Ren, G. Dong,
Angew. Chem. Int. Ed. 2015, 54, 12664; Angew. Chem. 2015, 127,
12855; f) Y. Huang, R. Zhu, K. Zhao, Z. Gu, Angew. Chem. Int. Ed. 2015,
54, 12669; Angew. Chem. 2015, 127, 12860; g) X. Wu, Y. Shen, W. Chen,
S. Chen, P. Xu, Y. Liang, Chem. Commun. 2015, 51, 16798; h) H. Shi, D.
Babinski, T. Ritter, J. Am. Chem. Soc. 2015, 137, 3775; i) J. Wang, L.
Zhang, Z. Dong, G. Dong, Chem 2016, 1, 581; j) F. Sun, M. Li, C. He, B.
Wang, B. Li, X. Sui, Z. Gu, J. Am. Chem. Soc. 2016, 138, 7456; k) X. Li, J.
Pan, S. Song, N. Jiao, Chem. Sci. 2016, 7, 5384; l) W. Fu, Z. Wang, W.
Chan, Z. Lin, F. Y. Kwong, Angew. Chem. Int. Ed. 2017, 56, 7166; Angew.
[12] L. Fan, J. Liu, L. Bai, Y. Wang, X. Luan, Angew. Chem. Int. Ed. 2017,
56, 14257; Angew. Chem. 2017, 129, 14445.
[13] For reviews, see: a) J. E. Saxton, In The Alkaloids: Chemistry and
Biology (Ed.: G. A. Cordell), Academic Press, San Diego, 1998; Vol. 51,
p 1. b) M. Somei, F. Yamada, Nat. Prod. Rep. 2005, 22, 73.
[14] a) M. Catellani, G. Chiusoli, J. Organomet. Chem. 1985, 286, c13; b) M.
Catellani, L. Ferioli, Synthesis 1996, 769.
[15] a) D. G. Hulcoop, M. Lautens, Org. Lett. 2007, 9, 1761; b) D. I. Chai, P.
Thansandote, M. Lautens, Chem. Eur. J. 2011, 17, 8175.
[16] CCDC 1822106 (3q'major) contains the supplementary crystallographic
data for this paper. These data can be obtained free of charge from The
Cambridge Crystallographic Data Centre.
This article is protected by copyright. All rights reserved.