Wang M, et al. Sci China Chem April (2011) Vol.54 No.4
665
DR. Synthesis and electroluminescence properties of fluorene-co-
diketopyrrolopyrrole-co-phenothiazine polymers. Polymer, 2000, 51:
1016–1023
EL performance of PFBY copolymers surpassed PFO due to
the presence of the electron acceptor BY unit. The best effi-
ciency among the copolymers was given by PFBY5, with a
maximum brightness of 485 cd/m2, a maximum current ef-
ficiency of 0.29 cd/A, and an external quantum efficiencies
of 0.10 %. In multilayer devices of PFBY5, the introduction
of PVK (20 nm) and TPBI (20 nm) further greatly improved
EL performance. The type IV diodes gave the best per-
formance, with an onset voltage of 5.0 V, a current effi-
ciency of 1.81 cd/A, a maximum brightness of 3012 cd/m2,
and an external quantum efficiencies of 0.66% with the CIE
coordinates of (0.20, 0.47). All these results clearly demon-
strated that the introduction of the BY unit in the polyfluo-
rene can reduce barrier of electron injection and effectively
improve their EL performance.
10 Yang J, Jiang CY, Zhang Y, Yang RQ, Yang W, Hou Q, Cao Y.
High-efficiency saturated red emitting polymers derived from fluo-
rene and naphthoselenadiazole. Macromolecules, 2004, 37: 1211–1218
11 Wang M, Tong H, Cheng YX, Xie ZY, Wang LX, Jing XB, Wang FS.
Synthesis and characterization of polyfluorenes containing bisphenazine
units. J Polym Sci Polym Chem, 2010, 48: 1990–1999
12 Li YY, Wu HB, Zou JH, Ying L, Yang W, Cao Y. Enhancement of
spectral stability and efficiency on blue light-emitters via introducing
dibenzothiophene-S,S-dioxide isomers into polyfluorene backbone.
Org Electron, 2009, 10: 901–909
13 Gao BX, Wang M, Cheng YX, Wang LX, Jing XB, Wang FS.
Pyrazine-containing acene-type molecular ribbons with up to 16 rec-
tilinearly arranged fused aromatic rings. J Am Chem Soc, 2008, 130:
8297–8306
14 Hu J, Zhang D, Harris FW. Ruthenium(III) chloride catalyzed oxida-
tion of pyrene and 2,7-disubstitued pyrenes: An efficient, one-step
synthesis of pyrene-4,5-diones and pyrene-4,5,9,10-tetraones. J Org
Chem, 2005, 70: 707–708
This research was supported by the National Natural Science Foundation
of China (50803062, 60977026 & 20904055), the Science Fund for Crea-
tive Research Groups (20621401), and the Natural Basic Research Foun-
dation of China (973 Program, 2009CB623601).
15 Li SB, Zhao P, Huang YQ, Li TC, Tang C, Zhu R, Zhao L, Fan QL,
Huang SQ, Xu ZS, Huang W. Poly-(p-phenylene vinylenes) with
pendent 2,4-difluorophenyl and fluorenyl moieties: Synthesis, char-
acterization, and device performance. J Polym Sci Polym Chem, 2009,
47: 2500–2508
16 Xin Y, Wen GA, Zeng WJ, Zhao L, Zhu XR, Fan QL, Feng JC,
Wang LH, Wei W, Peng B, Cao Y Huang, W. Hyperbranched oxadi-
azole-containing polyfluorenes: Toward stable blue light PLEDs.
Macromolecules, 2005, 38: 6755–6758
17 Lee DC, Jang K, McGrath KK, Uy R, Robins KA, Hatchett DW.
Self-assembling asymmetric bisphenazines with tunable electronic
properties. Chem Mater, 2008, 20: 3688–3695
18 Jin Y, Kim Y, Kim SH, Song S, Woo HY, Lee K, Suh H. Novel
green-light-emitting polymers based on cyclopenta[def]phenanthrene.
Macromolecules, 2008, 41: 5548–5554
19 Smith AA, Kannan K, Manavalan R, Rajendiran N. Spectral charac-
teristics of bicalutamide drug in different solvents and beta-cyclodextrin.
J Inclusion Phenom Macrocyclic Chem, 2007, 58: 161–167
20 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA,
Cheeseman JR. Gaussian 03 R C. Wallingford: Gaussian Inc, 2004
21 Jiang ZQ, Zhang WJ, Yao HQ, Yang CL, Cao Y, Qin JG, Yu G, Liu
YQ. Copolyfluorenes containing bridged triphenylamine or triphenyl-
amine: Synthesis, characterization, and optoelectronic properties. J
Polym Sci Polym Chem, 2009, 47: 3651–3661
22 Wang P, Jin H, Yang Q, Liu WL, Shen ZH, Chen XF, Fan XH, Zou
DC, Zhou QF. Synthesis, characterization, and electroluminescence
of novel copolyfluorenes and their applications in white light emis-
sion. J Polym Sci Polym Chem, 2009, 47: 4555–4565
1
2
Burroughes JH, Bradley DDC, Brown AR, Marks RN, Mackay K,
Friend RH, Burns PL, Holmes AB. Light-emitting-diodes based on
conjugated polymers. Nature, 1990, 347: 539–541
Friend RH, Gymer RW, Holmes AB, Burroughes JH, Marks RN,
Taliani C, Bradley DDC, Dos Santos DA, Bredas JL, Logdlund M,
Salaneck WR. Electroluminescence in conjugated polymers. Nature,
1999, 397: 121–128
Jin Y, Song S, Park SH, Park JA, Kim J, Woo HY, Lee K, Suh H.
Synthesis and properties of various PPV derivatives with phenyl sub-
stituents. Polymer, 2008, 49: 4559–4568
Chen Q, Liu N, Ying L, Yang W, Wu H, Xu W, Cao Y. Novel white-
light-emitting polyfluorenes with benzothiadiazole and Ir complex on
the backbone. Polymer, 2009, 50: 1430–1437
Yu W L, Pei J, Huang W, Heeger AJ. Spiro-functionalized polyfluo-
rene derivatives as blue light-emitting materials. Adv Mater, 2000, 12:
828–831
Park JW, Park SJ, Kim YH, Shin DC, You H, Kwon SK. Pure color
and stable blue-light emission-alternating copolymer based on fluo-
rene and dialkoxynaphthalene. Polymer, 2009, 50: 102–106
Zhu Y, Gibbons KM, Kulkarni AP, Jenekhe SA. Polyfluorenes
containing dibenzo[a,c]phenazine segments: Synthesis and efficient
blue electroluminescence from intramolecular charge transfer states.
Macromolecules, 2007, 40: 804–813
3
4
5
6
7
23 Liu J, Chen L, Shao SY, Xie ZY, Cheng YX, Geng YH, Wang LX,
Jing XB, Wang FS. Three-color white electroluminescence from a
single polymer system with blue, green and red dopant units as indi-
vidual emissive species and polyfluorene as individual polymer host.
Adv Mater. 2007, 19: 4224–4228
8
9
Herguch P, Jiang XZ, Liu MS, Jen AKY. Highly efficient fluorene-
and benzothiadiazole-based conjugated copolymers for polymer
light-emitting diodes. Macromolecules, 2002, 35: 6094–6100
Qiao Z, Peng JB, Jin Y, Liu QL, Weng JEN, He ZC, Han SH, Cao