P. Lakshmi Reddy et al. / Tetrahedron Letters 53 (2012) 1546–1549
1549
7. (a) Stetter, H.; Kuhlmann, H. Angew. Chem., Int. Ed. Engl. 1974, 13, 539; (b)
Amarnath, V.; Anthony, D. C.; Amarnath, K.; Valentine, W. M.; Wetterau, L. A.;
Graham, D. G. J. Org. Chem. 1991, 56, 6924.
8. (a) Barrett, A. G. M.; Love, A. C.; Tedeschi, L. Org. Lett. 2004, 6, 3377; (b) Kerr, M.
S.; Read de Alaniz, J.; Rovis, T. J. Org. Chem. 2005, 70, 5725.
works well with aliphatic, aromatic, and heterocyclic aldehydes.
This method is effective for the preparation of -diketones in good
yields especially from aromatic aldehydes, which are known to
c
give low yields under classical conditions.
9. (a) Murry, J. A.; Frantz, D. E.; Soheili, A.; Tillyer, R.; Grabowski, E. J. J.; Reider, P. J.
J. Am. Chem. Soc. 2001, 123, 9696; (b) Kerr, M. S.; Read de Alaniz, J.; Rovis, T. J.
Am. Chem. Soc. 2002, 124, 10298; (c) Mattson, A. E.; Bharadwaj, A. R.; Scheidt, K.
A. J. Am. Chem. Soc. 2004, 126, 2314; (d) Kerr, M. S.; Rovis, T. J. Am. Chem. Soc.
2004, 126, 8876; (e) Piel, I.; Steinmetz, M.; Hirano, K.; Frhlich, R.; Grimme, S.;
Glorius, F. Angew. Chem. Int. Ed. 2011, 50, 4983; (f) DiRocco, D. A.; Rovis, T.
Angew. Chem. Int. Ed. 2011, 50, 7982; (g) Nunez, M. G.; Garcıa, P.; Moro, R. F.;
Dıez, D. Tetrahedron 2010, 66, 2089.
Acknowledgments
PLR thanks UGC and KPK & SS thank the CSIR, New Delhi for the
award of fellowships.
10. Preparation of the catalysts (I and II): 3,30-(1,4-Phenylenebis(methylene)bis(5-
(2-hydroxyethyl)-4-methylthiozol-3-ium)bromide (I): 5-(2-Hydroxyethyl)-4-
methyl-1,3-thiazole (4.8 g, 38.1 mmol) and bis(1,4-bromomethylbenzene) (5 g,
19.0 mmol) in dry acetonitrile (100 mL) were mixed together in a 250 mL two-
necked round bottom flask fitted with a stirrer and a reflux condenser and
heated for 24 h under reflux. After completion, the mixture was allowed to cool
to room temperature with constant stirring and the resulting product was
isolated by vacuum filtration. The solid was subjected to drying to give the
pure catalyst (I). Yield: 9.08 g (86.4%); mp 252–254 °C; 1H NMR (300 MHz): d
10.32 (s, 2H), 7.66 (d, 2H, J = 7.4 Hz), 7.48 (t, 1H, J = 7.5 Hz), 7.35 (s, 1H), 5.88 (s,
4H), 3.66 (t, 4H, J = 5.2 Hz), 3.03 (t, 4H, J = 5.2 Hz), 2.39 (s, 6H); 13C NMR
(75 MHz, CDCl3): d 156.6, 141.3, 135.9, 133.3, 128.5, 59.2, 55.0, 29.1, 11.2; IR
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. (a) Myers, M. C.; Bharadwaj, A. R.; Milgram, B. C.; Scheidt, K. A. J. Am. Chem. Soc.
2005, 127, 14675; (b) Murry, J. A.; Frantz, D. E.; Soheili, A.; Tillyer, R.;
Grabowski, E. J. J.; Reider1, P. J. J. Am. Chem. Soc. 2001, 123, 9696; (c) Mattson, A.
C.; Bharadwaj, A. R.; Scheidt, K. A. J. Am. Chem. Soc. 2004, 126, 2314.
2. (a) Stetter, H. Angew. Chem. Int. Ed. 1976, 15, 639; (b) Stetter, H.; Kuhlmann, H.
Org. React. 1991, 40, 407; (c) Raghavan, S.; Anuradha, K. Tetrahedron Lett. 2002,
43, 5181; (d) Johnson, J. S. Angew. Chem., Int. Ed. 2004, 43, 1326.
3. (a) Stetter, H.; Schlenker, W. Tetrahedron Lett. 1980, 21, 3479; (b) Hirano, K.;
Biju, A. T.; Piel, I.; Glorius, F. J. Am. Chem. Soc. 2009, 131, 14190; (c) Biju, A. T.;
Glorius, F. Angew. Chem. Int. Ed. 2010, 49, 9761; (d) Biju, A. T.; Wurz, N. E.;
Glorius, F. J. Am. Chem. Soc. 2010, 132, 5970; (e) Bugaut, X.; Liu, F.; Glorius, F. J.
Am. Chem. Soc. 2011, 133, 8130.
4. (a) Mortensen, D. S.; Rodriguez, A. L.; Carlson, K. E.; Sun, J.; Katzenellenbogen, B.
S.; Katzenellenbogen, J. A. J. Med. Chem. 2001, 44, 3838; (b) El-Haji, T.; Martin, J.
C.; Descotes, G. J. J. Heterocycl. Chem. 1983, 20, 233; (c) Bharadwaj, A. R.;
Scheidt, K. A. Org. Lett. 2004, 6, 2465; (d) Perrine, D. M.; Kagan, J.; Huang, D. B.;
Zeng, K.; Theo, B. K. J. Org. Chem. 1987, 52, 2213; (e) Jones, T. H.; Franko, J. B.;
Blum, M. S.; Fales, H. M. Tetrahedron Lett. 1980, 21, 789; (f) Raghavan, S.;
Anuradha, K. Synlett 2003, 711; (g) Yadav, J. S.; Reddy, B. V. S.; Eeshwaraiah, B.;
Gupta, M. K. Tetrahedron Lett. 2004, 45, 5873.
5. (a) Jones, R. A.; Bean, G. P. The Chemistry of Pyrroles; Academic: London, 1977;
(b) Sundberg, R. J. In Comprehensive Heterocyclic Chemistry; Katritzky, A. R.,
Rees, C. W., Eds.; Pergamon: Oxford, 1984; Vol. 4, pp 329–330; (c)
Friedrischsen, W.; Pagel, K. Prog. Heterocycl. Chem. 1995, 7, 130; (d) Saltiel, E.;
Ward, A. Drugs 1987, 34, 222; (e) Sridhar, D. R.; Jogibhukta, M.; Rao, P. S.;
Handa, V. K. Synthesis 1982, 1061.
(KBr):
20H25N2O2S2: 389.1357 [M+H]2- found: 389.1358, C10H13NOS: 195.0717,
[M+H]1ꢀ found: 195.0725.
m ; HRMS (ESI) calcd for
3254, 3001, 1583, 1445, 1081, 605 cmꢀ1
C
3,30-(1,3-Phenylenebis(methylene)bis(5-(2-hydroxyethyl)-4-methylthiozol-3-
ium)bromide (II): 5-(2-Hydroxyethyl)-4-methyl-1,3-thiazole (1.0 g, 7.6 mmol)
and bis(1,3-bromomethylbenzene) (1.0 g, 3.8 mmol) in dry acetonitrile (18 mL)
were mixed thoroughly in a 50 mL two necked round bottom flask fitted with a
stirrer and a reflux condenser. The mixture was heated for 24 h under reflux
and then allowed to cool to room temperature with constant stirring. The
product was isolated by vacuum filtration and then washed with ether to
afford colorless solid which was subjected to preliminary drying to afford the
catalyst (II). Yield: 1.76 g (83.8%); 1H NMR (300 MHz): d 10.31 (s, 2H), 7.66 (d,
2H, J = 7.4 Hz), 7.48 (t, 1H, J = 7.5 Hz), 7.35 (s, 1H), 5.88 (s, 4H), 3.66 (t, 4H,
J = 5.2 Hz), 3.03 (t, 4H, J = 5.2 Hz), 2.39 (s, 6H); 13C NMR (75 MHz, CDCl3): d
157.5, 143.5, 136.6, 133.9, 130.6, 129.6, 126.4, 60.0, 55.7, 29.9, 12.2; IR (KBr):
m
3294, 2965, 1587, 1445, 1057, 697 cmꢀ1; HRMS (ESI) calcd for C20H25N2O2S2,
389.1357 [M+H]2ꢀ found: 389.1356, C10H13NOS, 195.0717, [M+H]1ꢀ found:
195.0716.
11. Experimental procedure: To a stirred solution of the catalyst (I) (0.2 mmol) in
3 mL of ethanol were added 0.14 mL of Et3N (1.0 mmol) and an aldehyde
(1.2 mmol). The mixture was allowed to stir for 10 min at room temperature
and then chalcone (1 mmol) was added. The resulting mixture was kept under
reflux for 15 h at 70 °C. The progress of the reaction was monitored by TLC.
After completion, the mixture was quenched with water and extracted with
ethyl acetate (2 ꢁ 15 mL). Removal of the solvent followed by purification on
silica gel column chromatography gave the pure 1,4-diketone.
6. (a) Stetter, H.; Kuhlmann, H. Synthesis 1975, 379; (b) Stetter, H.; Mohrmann, K.-
H.; Schlenker, W. Chem. Ber. 1981, 114, 581; (c) Yadav, J. S.; Anuradha, K.;
Reddy, B. V. S.; Eeshwaraiah, B. Tetrahedron Lett. 2003, 44, 8959.