1H), 5.86 (d, 1H, J = 7.8 Hz), 5.66 (s, 1H, –CvCH), 3.70–3.55
(m, 1H), 3.50–3.38 (m, 1H), 3.32–3.20 (m, 2H), 3.07–2.91(m,
2H), 1.97–0.30 (m, 27H). 13C NMR (100 MHz, C6D6): δ 181.1,
180.9(2), 180.9(0), 180.8, 162.7, 161.4, 160.3, 139.2, 139.1,
137.9, 136.7, 135.0, 134.9, 133.0, 132.8, 132.7, 132.4, 130.8,
130.4, 129.5, 129.3, 127.8, 127.7, 127.6, 124.7, 123.4, 122.9,
122.4, 120.3, 119.1, 110.7, 110.3, 108.3, 79.6, 79.1, 67.7, 67.1,
31.9, 30.2, 29.2, 28.9, 28.5, 28.3, 28.1, 23.2, 23.0, 22.9, 22.8,
14.4, 14.3, 14.2. 31P NMR (161.9 MHz, CDCl3): δ 22.86 (d, J =
in toluene, followed by a solution of Ni(cod)2 (10 equiv.) in
toluene at the desired temperature under nitrogen atmosphere.
Then the autoclave was pressurized by ethylene for 1 or 4 h. The
reaction was quenched by venting the autoclave. The mixture
was poured into a solution of acidified ethanol (200 mL of 10%
HCl) and stirred for 12 hours. The polymer was isolated by fil-
tration, washed with ethanol and dried under vacuum at 70 °C to
constant weight.
291.2 Hz), 19.79 (d,
C59H66NiO4P2: C, 73.83; H, 6.93; found: C, 74.44, H, 7.15.
J = 296.6 Hz) Anal. calcd for
Acknowledgements
We thank the financial support from the Natural Sciences Foun-
dation of China (No. 20821002, 21174159), the Major State
Basic Research Development Program (Grant No.
2009CB825300), the Science and Technology Commission of
Shanghai Municipality, and Chinese Academy of Sciences.
{[Ni(2-OiPrC6H4)2PvC(Ph)O][(2-OiPr-C6H4)PPh3]}
(5e).
1
Yield: 0.57 g, 65%. H NMR (300 MHz, CDCl3): δ 8.75 (brs,
1H), 8.10–7.96 (m 1H),7.52–7.07 (m, 23H), 6.90 (t. J = 6.9 Hz,
1H), 6.70–6.58(m, 2H), 6.54 (t, J = 7.2 Hz, 1H), 6.32–6.24(m,
1H), 6.13 (t, J = 6.9 Hz, 1H), 6.06 (t, J = 6.9 Hz, 1H), 5.87 (d, J
= 8.1 Hz, 1H), 5.36 (s, 1H, –CvCH), 4.40–4.36 (m, 1H, –OCH
(CH3)2), 4.02–3.82 (m, 2H, –OCH(CH3)2), 1.52 (d, 3H, J = 4.8
Hz, –OCH(CH3)2), 1.22 (d, 3H, J = 5.1 Hz, –OCH(CH3)2), 1.15
(d, 3H, J = 5.1 Hz, –OCH(CH3)2), 0.78 (d, 3H, J = 5.7 Hz,
–OCH(CH3)2), 0.69 (brs, 3H, –OCH(CH3)2), 0.27 (brs, 3H,
–OCH(CH3)2). 13C NMR (75 MHz, CDCl3): 179.5, 179.3,
179.2, 179.1, 161.1, 159.4, 158.9, 157.9, 138.4, 1382, 137.8,
137.7, 137.0, 136.8, 134.5, 134.4, 132.8, 132.2, 132.1, 131.9,
131.8, 131.5, 131.1, 130.7, 130.3, 129.6, 129.0, 127.5, 127.4,
127.0, 127.0, 124.3, 124.1, 123.8, 123.6, 123.1, 123.0, 123.6,
122.4, 121.9, 119.6, 119.4, 119.0, 118.0, 111.4, 110.5, 109.6,
108.3, 80.1, 79.9, 79.5, 79.3, 69.0, 68.3, 67.8, 67.3, 22.8, 22.2,
21.8, 21.0, 20.3. 31P NMR (121.4 MHz, CDCl3): δ 21.24 (d, J =
Notes and references
1 For Reviews, see: (a) S. D. Ittel, L. K. Johnson and M. Brookhart, Chem.
Rev., 2000, 100, 1169; (b) V. C. Gibson and S. K. Spitzmesser, Chem.
Rev., 2003, 103, 283; (c) V. C. Gibson, C. Redshaw and G. A. Solan,
Chem. Rev., 2007, 107, 1745; (d) B. M. Boardman and G. C. Bazan, Acc.
Chem. Res., 2009, 42, 1597; (e) A. Nakamura, S. Ito and K. Nozaki,
Chem. Rev., 2009, 109, 5215For selected examples, see: (f) L.
K. Johnson, C. M. Killian and M. Brookhart, J. Am. Chem. Soc., 1995,
117, 6414; (g) B. L. Small, M. Brookhart and A. M. Bennett, J. Am.
Chem. Soc., 1998, 120, 4049; (h) G. J. P. Britovsek, V. C. Gibson, B.
S. Kimberley, P. J. Maddox, S. J. McTavish, G. A. Solan, A. J. P. White
and D. J. Williams, Chem. Commun., 1998, 849; (i) B. L. Small and
M. Brookhart, J. Am. Chem. Soc., 1998, 120, 7143; ( j) T. R. Younkin, E.
F. Connor, J. I. Henderson, S. K. Friedrich, R. H. Grubbs and D.
A. Bansleben, Science, 2000, 287, 460; (k) E. Drent, R. V. Dijk, R.
V. Ginkel, B. V. Oort and R. I. Pugh, Chem. Commun., 2002, 744; (l) X.-
Y. Zhou, S. Bontemps and R. F. Jordan, Organometallics, 2008, 27,
4821; (m) S. Noda, T. Kochi and K. Nozaki, Organometallics, 2009, 28,
656.
296.3 Hz), 17.81 (d,
J = 294.5 Hz) Anal. calcd for
C53H54NiO4P2: C, 72.70; H, 6.22; found: C, 72.24; H, 6.54.
{[Ni(2-OBnC6H4)PvCHC(Ph)O][(2-OBnC6H4)PPh3]}
(5f).
1
Yield: 0.62 g, 61%. H NMR (300 MHz, C6D6): δ 9.25–9.22
(m, 1H), 8.37–8.35 (m, 1H),7.83–7.78 (m, 2H), 7.71–7.65 (m,
8H), 7.48–7.45 (m, 2H), 7.33–7.20 (m, 7H), 7.08–6.92 (m,
26H), 6.86–6.74 (m, 3H), 6.70–6.61 (m, 5H), 6.48 (d, J = 8.7
Hz, 1H), 6.39 (t, J = 7.2 Hz, 1H), 5.86 (d, J = 7.8 Hz, 1H), 5.67
(s, 1H, –CvCH), 4.57–4.43 (m, 4H, –OCH2Ph), 4.30 (d, J =
11.7, 1H, –OCH2Ph), 4.09–4.05 (d, J = 11.4, 1H, –OCH2Ph).
13C NMR (75 MHz, C6D6): δ 180.9, 180.8, 162.6(9), 162.6(6),
160.6(3), 160.8, 159.6, 139.1, 139.0, 138.96, 138.9, 138.0,
137.4, 136.8, 134.9(8), 134.9(2), 134.8, 133.9, 133.6, 133.4(4),
133.4(0), 133.3, 132.6, 132.5, 132.4, 132.2, 131.6, 131.1, 130.8,
129.5, 128.9(6), 128.9(0). 128.8, 128.7(1), 128.7(0), 128.5(4),
128.5(1), 128.4, 128.3, 127.9(3), 127.9(0), 127.8, 127.7(4),
127.7(0), 127.5(3), 127.5(0), 127.4(4), 127.4(0), 127.3(2),
127.3(0), 127.2, 127.1, 127.0, 122.6, 121.2, 121.1, 121.0,
120.9(4), 120.9(0), 120.8, 119.7, 111.8, 111.3, 109.0, 79.5,
79.0, 70.2, 69.7, 69.0. 31P NMR (121.4 MHz, CDCl3):
δ 22.56 (d, J = 303.5 Hz), 18.78 (d, J = 291.4 Hz). Anal.
calcd for C65H54NiO4P2: C, 76.56; H, 5.34; found: C, 76.33;
H, 5.23.
2 (a) L. K. Johnson, S. Mecking and M. Brookhart, J. Am. Chem. Soc.,
1996, 118, 267; (b) S. Mecking, L. K. Johnson, L. Wang and
M. Brookhart, J. Am. Chem. Soc., 1998, 120, 888; (c) Z. Guan, P.
M. Cotts, E. F. Mccord and S. J. McLain, Science, 1999, 283, 2059;
(d) M. C. Sacchi, M. Sonzogni, S. Losio, F. Florlini, P. Locatelli, I. Tritto
and M. Licchelli, Macromol. Chem. Phys., 2001, 202, 2052;
(e) P. Preishuber-Pflugl and M. Brookhart, Macromolecules, 2002, 35,
6074; (f) Z. Guan, Chem.–Eur. J., 2002, 8, 3086; (g) D. Zhang, G.-
X. Jin, L.-H. Weng and F. Wang, Organometallics, 2004, 23, 3270; (h) J.-
C. Yuan, T.-J. Mei, P. T. Gomes, M. M. Marques, Y.-F. Liu, C.-P. Miao
and X.-L. Xie, J. Organomet. Chem., 2010, 696, 3251.
3 (a) C. Wang, S. Friedrich, T. R. Younkin, R. T. Li, R. H. Grubbs, D.
A. Bansleben and M. W. Day, Organometallics, 1998, 17, 3149;
(b) D. Zhang, G.-X. Jin and N. Hu, Chem. Commun., 2002, 574; (c) E.
F. Connor, T. R. Younkin, J. I. Henderson, S. Hwang, R. H. Grubbs, W.
P. Roberts and J. J. Litzau, J. Polym. Sci., Part A: Polym. Chem., 2002,
40, 2842; (d) W.-H. Sun, H. Yang, Z. Li and Y. Li, Organometallics,
2003, 22, 3678; (e) H. Liang, J.-Y. Liu, X.-F. Li and Y.-S. Li, Polyhedron,
2004, 23, 1619; (f) T. Hu, Y.-G. Li, Y.-S. Li and N.-H. Hu, J. Mol. Catal.
A: Chem., 2006, 253, 155; (g) T. Hu, Y.-G. Li, J.-Y. Liu and Y.-S. Li,
Organometallics, 2007, 26, 2609; (h) D. Zhang, L. Weng and G.-X. Jin,
J. Organomet. Chem., 2010, 695, 643; (i) H.-L. Mu, W.-P. Ye, D.-P. Song
and Y.-S. Li, Organometallics, 2010, 29, 6282.
4 W. Keim, F. H. Kowalldt, R. Goddard and C. Krüger, Angew. Chem., Int.
Ed. Engl., 1978, 17, 466.
5 U. Klabunde and S. D. Ittel, J. Mol. Catal., 1987, 41, 123.
6 U. Klabunde, R. Muhlhaupt, T. Herskowitz, A. H. Janowicz, J. Calabrese
and S. D. Ittel, J. Polym. Sci., Part A: Polym. Chem., 1987, 25, 1989.
7 (a) K. A. Ostoja-Starzewski and J. Witte, Angew. Chem., Int. Ed. Engl.,
1989, 24, 599; (b) J. Pietsch, P. Braunstein and Y. Chauvin, New
J. Chem., 1998, 22, 467; (c) J. Heinicke, M. He, A. Dal, H. Klein,
O. Hetche, W. Keim, U. Flörke and H. Haupt, Eur. J. Inorg. Chem.,
Ethylene polymerization
A 300 mL stainless-steel autoclave was heated to 100 °C under
vacuum before use. The reactor was charged with a solution of 5
4556 | Dalton Trans., 2012, 41, 4552–4557
This journal is © The Royal Society of Chemistry 2012