Scheme 2. First Cyclization Attempts and Proposed
Pentavalent Silicate Species
Figure 1. Examples of bioactive silacycles.
Increasing interest in silylated derivatives and a lack of
general synthetic procedures prompted us to focus on the
preparation of the hydrosilaquinoline 4a (Z = N-Boc) and
silachroman 5a (Z = O) moieties, obtained previously in
moderate yields and under drastic conditions.8 Our initial
retrosynthetic route is outlined in Scheme 1: the expected
products 4a and 5a could be formed by an intramolecular
cyclization of the precursors 6 and 7, respectively. These
substrates would in turn be prepared from aniline and
phenol derivatives 8 and 9 in the presence of bis-
(chloromethyl)dimethylsilane 10.
We hypothesized that a common pentaorganosilicate spe-
cies 11 could explain this result. The latter would evolve by
either migration of the aromatic ring (path a, Scheme 2) or
the CH2ꢀSi bond (path b). Such a mechanism parallels the
reactivity of the R-halosilanes with that of the R-halobo-
ronic esters, classically employed in the Matteson rearrange-
ment (Scheme 3).10
Scheme 3. Matteson and Sila-Matteson Rearrangements
Scheme 1. Initial Synthetic Route for the Preparation of
Hydrosilaquinoline 4a and Silachroman 5a
The precursors 6 and 7 were prepared in good yields
from 8 and 9 (72% and 82% yields, respectively). Then, the
halogenꢀlithium exchange and subsequent nucleophilic
substitution were performed at ꢀ40 °C using n-butyl-
lithium in tetrahydrofuran. Surprisingly, the intramolecu-
lar cyclization furnished not only the desired products 4a
and 5a but also their regioisomers 4b and 5b.8a,9 In both
series, the cyclization proceeds in good yield (about 85%)
and low selectivity (4a/4b = 45:55 and 5a/5b = 60:40,
Scheme 2).
This reactivity has been previously proposed for
silicon in the case of the nucleophilic addition of
halide or alkoxide11 and was briefly evoked for a carbon
nucleophile.12
Next, various experimental conditions were screened.13
In tetrahydrofuran, none of the following parameters
seemed to exert a significant influence on the ratio of the
(9) For previous syntheses of related compounds, see: (a) Miller,
D. J.; Showell, G. A.; Conroy, R.; Daiss, J.; Tacke, R.; Tebbe, D. Amedis
Pharmaceuticals Ltd. (U.K.), PCT Int. Appl. WO/2005/005443A1,
2005. (b) Greenlee, W. J.; Zhu, Z.; Asberom, T.; Huang, X.; Josien, H. B.
Schering Corp. (USA), PCT Int. Appl. WO/2009/061699A1, 2009.
(10) (a) Matteson, D. S. Chem. Rev. 1988, 89, 1535–1551. (b) Matteson,
D. S. Tetrahedron 1998, 54, 10555–10607 and references cited therein.
For recent applications, see: (c) Molander, G. A.; Hiebel, M.-A. Org.
Lett. 2010, 12, 4876–4879. (d) Porcel, S.; Bouhadir, G.; Saffon, N.;
Maron, L.; Bourissou, D. Angew. Chem., Int. Ed. 2010, 49, 6186–
6189. (e) Sonawane, R. P.; Jheengut, V.; Rabalakos, C.; Larouche-
Gauthier, R.; Scott, H. K.; Aggarwal, V. K. Angew. Chem., Int. Ed.
2011, 50, 3760–3763. For recent silicon-based anion-relay rearrange-
ments, see: (f) Smith, A. B., III; Tong, R.; Kim, W. S.; Maio, W. A.
Angew. Chem., Int. Ed. 2011, 50, 8904–8907. (g) Zheng, P.; Cai, Z.;
Garimallaprabhakaran, A.; Rooshenas, P.; Schreiner, P. R.; Harmata,
M. Eur. J. Org. Chem. 2011, 5255–5260. (h) Smith, A. B., III; Hoye,
A. T.; Martinez-Solorio, D.; Kim, W. S.; Tong, R. J. Am. Chem. Soc.
2012, 134, 4533–4536.
(11) (a) Corey, J. Y.; Corey, E. R.; Chang, V. H. T.; Hauser, M. A.;
Lelber, M. A.; Reinsel, T. E.; Riva, M. E. Organometallics 1984, 3, 1051–
1060 and references cited therein. (b) Damrauer, R.; Danahey, S. E.;
Yost, V. E. J. Am. Chem. Soc. 1984, 106, 7633–7634. (c) Sans, E. A.;
Shechter, H. Tetrahedron Lett. 1985, 26, 1119–1122. (d) Hudrlik, P. F.;
Abdallah, Y. M.; Kulkarni, A. K.; Hudrlik, A. M. J. Org. Chem. 1992,
57, 6552–6556. (e) Eisch, J. J.; Chiu, C. S. Heteroat. Chem. 1994, 5, 265–
274. (f) Hijji, Y. M.; Hudrlik, P. F.; Hudrlik, A. M. Chem. Commun.
1998, 1213–1214. (g) Allen, M. J.; Aprahamian, S. L.; Sans, E. A.;
Shechter, H. J. Org. Chem. 2002, 67, 3561–3574.
(12) (a) Shiragami, H.; Kawamoto, T.; Imi, K.; Matsubara, S.; Utimo-
to, K.; Nozaki, H. Tetrahedron 1988, 44, 4009–4022. (b) Matsumoto, K.;
Oshima, K.; Utimoto, K. Tetrahedron. Lett. 1990, 31, 6055–6058.
(13) Comparative results are detailled in the Supporting Information.
Org. Lett., Vol. 14, No. 8, 2012
2075