A. Gómez-SanJuan et al. / Tetrahedron Letters 53 (2012) 2157–2159
2159
4. (a) García, E.; Arrasate, S.; Lete, E.; Sotomayor, N. J. Org. Chem. 2005, 70, 10368–
10374; (b) García, E.; Arrasate, S.; Ardeo, A.; Lete, E.; Sotomayor, N. Tetrahedron
Lett. 2001, 42, 1511–1513.
5. (a) González-Temprano, I.; Osante, I.; Lete, E.; Sotomayor, N. J. Org. Chem. 2004,
69, 3875–3885; (b) González-Temprano, I.; Lete, E.; Sotomayor, N. Synlett 2002,
593–597.
6. (a) Onomura, O.; Kanda, Y.; Nakamura, Y.; Maki, T.; Matsumura, Y. Tetrahedron
Lett. 2002, 43, 3229–3231; (b) Minato, D.; Imai, M.; Kanda, Y.; Onomura, O.;
Matsumura, Y. Tetrahedron Lett. 2006, 47, 545–548; (c) Matsumura, Y.; Minato,
D.; Onomura, O. J. Organomet. Chem. 2007, 692, 654–663.
a model to explain the stereochemical outcome of these reactions
has been reported recently.17
In summary, it has been shown that BINOL-derived chiral
Brønsted acids are capable of carrying out the intramolecular
a
-amidoalkylation of a tertiary N-acyliminium ions derived from
an 5-hydroxy-5-methylpyrrolidin-2-one, when an methoxylated
benzene ring is used as internal
nucleophile.18 These preliminary
p
results are interesting because, as indicated above, this procedure
failed when thiourea catalysts were used, and required electron
rich heteroaromatic systems, as indoles or pyrroles.13 In our case,
the use of the sterically congested acid 3e is determinant to obtain
good levels of enantioselection, and contrasts with the results
obtained by Dixon11,12 with b-carbolines, where the best results
were obtained with 3b, the less reactive acid for this system. These
results illustrate the subtle balance of interactions in an intermedi-
ate such as I that control both the enantioselectivity and the reac-
tivity itself. Work along these lines is in progress.
7. (a) Terada, M. Chem. Commun. 2008, 4097–4112; (b) Kampen, D.; Reisenger, C.
M.; List, B. Top. Curr. Chem. 2010, 291, 395–456; (c) Schenker, S.; Zamfir, A.;
Freund, M.; Tsogoeva, S. B. Eur. J. Org. Chem. 2011, 2209–2222; (d) Rueping, M.;
Nachtsheim, B. J.; Ieawsuwan, W.; Atodiresei, I. Angew. Chem., Int. Ed. 2011, 50,
6706–6720.
8. (a) Doyle, A. G.; Jacobsen, E. N. Chem. Rev. 2007, 107, 5713–5743; (b) Sohtome,
Y.; Nagasawa, K. Synlett 2010, 1–22.
9. (a) Yu, X.; Lu, A.; Wang, Y.; Wu, G.; Song, H.; Zhou, Z.; Tang, C. Eur. J. Org. Chem.
2011, 892–897; (b) Xie, Y.; Zhao, Y.; Qian, B.; Yang, L.; Xia, C.; Huang, H. Angew.
Chem., Int. Ed. 2011, 50, 5682–5686.
10. (a) Yu, X.; Wang, Y.; Wu, G.; Song, H.; Zhou, Z.; Tang, C. Eur. J. Org. Chem. 2011,
3060–3066; (b) Rueping, M.; Nachtsheim, B. Synlett 2010, 119–122.
11. Muratore, M. E.; Holloway, C. A.; Pilling, A. W.; Storer, R. I.; Trevitt, G.; Dixon, D.
J. J. Am. Chem. Soc. 2009, 131, 10796–10797.
12. Holloway, C. A.; Muratore, M. E.; Storer, R. I.; Dixon, D. J. Org. Lett. 2010, 12,
4720–4723.
Acknowledgments
13. Raheem, I. T.; Thiara, P. S.; Jacobsen, E. N. Org Lett. 2008, 10, 1577–1580.
14. Collado, M. I.; Manteca, I.; Sotomayor, N.; Villa, M. J.; Lete, E. J. Org. Chem. 1997,
62, 2080–2092.
We wish to thank the Ministerio de Ciencia e Innovación
(CTQ2009-07733), and Universidad del País Vasco (UFI 11/22) for
their financial support. Technical and human support provided
by SGIker (UPV/EHU, MICINN, GV/EJ, ERDF and ESF) is gratefully
acknowledged.
15. (a) Amat, M.; Elias, V.; Llor, N.; Subrizi, F.; Molins, E.; Bosch, J. Eur. J. Org. Chem.
2010, 4017–4026; (b) Allin, S. M.; Gaskell, S. N.; Towler, J. M. R.; Bulman Page,
P. C.; Saha, B.; McKenzie, M. J.; Martin, W. P. J. Org. Chem. 2007, 72, 8972–8975;
(c) Kawai, N.; Matsuda, M.; Uenishi, J. Tetrahedron 2011, 67, 8648–8653.
16. Representaitive examples (a) Terada, M.; Machioka, K.; Sorimachi, K. Angew.
Chem., Int. Ed. 2009, 48, 2553–2556; (b) Rueping, M.; Lin, M.-Y. Chem. Eur. J.
2010, 16, 4169–4172; (c) Li, G.; Kaplan, M. J.; Wojtas, L.; Antilla, J. C. Org. Lett.
2010, 12, 1960–1963; (d) Xie, Y.; Zhao, Y.; Qian, B.; Yang, L.; Xia, C.; Huang, H.
Supplementary data
Angew. Chem., Int. Ed. 2011, 50, 5682–5686. See also Refs..10–12
17. Simón, L.; Goodman, J. M. J. Org. Chem. 2011, 76, 1775–1788.
.
Supplementary data associated with this article can be found, in
include MOL files and InChiKeys of the most important compounds
described in this article.
18. (R)-(+)-8,9-dimethoxy-10b-methyl-1,5,6,10b-tetrahydropyrrolo[2,1-
a]isoquinolin-3[2H]-one (4c): To a solution of the succinimide 1c (48.4 mg,
0.18 mmol) in dry THF (5 mL), MeLi (0.42 mL of a 0.97 M solution, 0.40 mmol)
was added at –78 °C. The resulting mixture was stirred at this temperature for
6 h, and was quenched by the addition of saturated aqueous NH4Cl solution
(5 mL). The mixture was and allowed to warm to rt, and the organic layer was
separated. The aqueous phase was extracted with CH2Cl2 (3 ꢀ 10 mL). The
combined organic extracts were dried (Na2SO4) and concentrated in vacuo to
afford hydroxy lactam 2c.14 Without further purification, 2c was dissolved in
dry toluene (25 mL), and acid 3e (26 mg, 0.03 mmol) was added. The resulting
mixture was refluxed for 4 days. The solvent was removed, and the
pyrroloisoquinoline 4c was obtained after chromatographic purification
References and notes
1. (a) Pässler, U.; Knöller, H. J. In The Alkaloids Chemistry and Biology; Knöller, H. J.,
Ed.; Elsevier: Amsterdam, 2011; Vol. 70, pp 79–151; (b) Pulka, K. Curr. Opin.
Drug Discov. Devel. 2010, 13, 669–684; (c) Stockigt, J.; Antonchick, A. P.; Wu, F.-
R.; Waldmann, H. Angew. Chem., Int. Ed. 2011, 50, 8534–8538.
2. (a) Speckamp, W. N.; Hiemstra, H. Tetrahedron 1985, 41, 4367–4416; (b)
Maryanoff, B. E.; Zhang, H.; Cohen, J. H.; Turchi, I. J.; Maryanoff, C. A. Chem. Rev.
2004, 104, 1431–1628; (c) Yazici, A.; Pyne, S. G. Synthesis 2009, 339–368; (d)
Yazici, A.; Pyne, S. G. Synthesis 2009, 513–541; (e) Martínez-Estibalez, U.;
Gómez-SanJuan, A.; García-Calvo, O.; Lete, E.; Sotomayor, N. Eur. J. Org. Chem.
2011, 3610–3633.
(alumina, AcOEt) (11 mg, 23%):
enantiomeric excess was determined by HPLC to be 74%. [Chiralcel OD, 5%
½
a 2D0
ꢁ
:
+130.1 (c = 0.5, CHCl3); The
hexane: 2-propanol, 1 mL/min, tr (R) = 49.6 min (87%), tr (S) = 57.1 min (13%)];
IR (film) 1685 cmꢂ1 1H NMR (CDCl3); 1.50 (s, 3H), 2.04–2.10 (m, 1H), 2.32-2.44
;
(m, 2H), 2.57–2.67 (m, 2H), 2.84–2.91 (m, 1H), 3.29 (td, J = 13.0, 4.5 Hz, 1H), 3.84
(s, 3H), 3.86 (s, 3H), 4.28 (ddd, J = 12.2, 6.2, 1.8 Hz, 1H), 6.56 (s, 1H), 6.63 (s, 1H);
13C NMR (CDCl3). 27.0, 27.6, 30.0, 34.4, 36.0, 55.2, 55.9, 64.6, 107.9, 116.8, 125.5,
133.3, 147.7, 147.9, 175.7; MS (EI) m/z (rel. intensity) 261 (M+, 8), 246 (100), 230
(14), 202 (9), 185 (4), 172 (4), 123 (6), 117 (4), 91 (5), 77 (8). Anal. Calcd
forC15H19NO3: C, 68.94, H, 7.33, N, 5.36. Found: C, 69.14, H, 7.09, N, 5.07.
3. For reviews, see Ref..2 For representative examples from our group, see: (a)
Osante, I.; Collado, M. I.; Lete, E.; Sotomayor, N. Eur. J. Org. Chem. 2001, 1267–
1277; (b) Ardeo, A.; García, E.; Arrasate, S.; Lete, E.; Sotomayor, N. Tetrahedron
Lett. 2003, 44, 8445–8448; Abdullah, M. N.; Arrasate, S.; Lete, E.; Sotomayor, N.
Tetrahedron 2008, 64, 1323–1332.