ORGANIC
LETTERS
2012
Vol. 14, No. 8
2026–2029
A Single Step Approach to Piperidines
via Ni-Catalyzed β-Carbon Elimination
Puneet Kumar and Janis Louie*
Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City,
Utah 84102, United States
Received March 1, 2012
ABSTRACT
An easy and expeditious route to substituted piperidines is described. A Ni-phosphine complex was used as catalyst for [4 þ 2] cycloaddition of
3-azetidinone and alkynes. The reaction has broad substrate scope and affords piperidines in excellent yields and excellent regioselectivity. In the
reaction of an enantiopure azetidinone, complete retention of stereochemistry was observed.
The ubiquity of piperidines in pharmaceuticals and
natural products makes them attractive targets for organic
synthesis.1 Over the past few years, tremendous progress
has been made in accessing substituted piperidines.2 Spe-
cifically, aza-Achmatowicz rearrangement3 and ring clos-
ing metathesis4 provideaccesstothese motifsinanefficient
fashion (Scheme 1). However, synthesizing highly substi-
tuted piperidines is still a challenging problem. Also, most
of the existing strategies rely on multistep routes, which
urges the need for an operationally simple, expeditious,
and efficient methodology to access these heterocycles.
Recently, we and others have reported a Ni-catalyzed
coupling of carbonyl compounds with alkynes and alkenes.5
Most importantly, the nickel-catalyst system has enabled
the oxidative coupling of alkynes/alkenes and unactivated
ketones to provide dienones and pyrans.5a,5b,6 This is in
contrast to other reports where use of activated ketones
was critical for the success of the reaction.7 Murakami and
co-workers discovered that transition metal catalysts can be
utilized to exploit the ketone moiety of cyclobutanone that
can render β-carbon elimination in reactive intermediates.8
Scheme 1. Existing Strategies to 3-Piperidones
(1) (a) Strunz, G. M.; Findlay, J. A. In The Alkaloids; Brossi, A., Ed.;
Academic Press: London, 1985; Vol. 26, pp 89ꢀ183.
(2) (a) Baliah, V.; Jeyaraman, R.; Chandrasekaran, L. Chem. Rev.
1983, 83, 379. (b) Bull, J. A.; Mousseau, J. J.; Pelletier, G.; Charette,
A. B. Chem. Rev. 201210.1021/cr200251d. (d) Sardina, F. J.; Rapoport, H.
€
Chem. Rev. 1996, 96, 825. (e) Schneider, C.; Borner, C.; Schuffenhauer,
A. Eur. J. Org. Chem. 1999, 1999, 3353. (f) Tambar, U. K.; Lee, S. K.;
Leighton, J. L J. Am. Chem. Soc. 2010, 132, 10248.
(3) Leverett, C. A.; Cassidy, M. P.; Padwa, A. J. Org. Chem. 2006, 71,
8591.
(4) Cossy, J.; Willis, C.; Bellosta, V.; BouzBouz, S. J. Org. Chem.
2002, 67, 1982.
(6) (a) Miller, K. M.; Jamison, T. F. Org. Lett. 2005, 7, 3077.
(b) Murakami, M.; Ashida, S. Chem. Commun. 2006, 4599. (c) Ogoshi,
S.; Ueta, M.; Arai, T.; Kurosawa, H. J. Am. Chem. Soc. 2005, 127,
12810.
(7) (a) Kong, J.-R.; Ngai, M.-Y.; Krische, M. J. J. Am. Chem. Soc.
2005, 128, 718. (b) Otake, Y.; Tanaka, R.; Tanaka, K. Eur. J. Org. Chem.
2009, 2009, 2737.
(5) (a) Tekavec, T. N.; Louie, J. Org. Lett. 2005, 7, 4037. (b) Tekavec,
T. N.; Louie, J. J. Org. Chem. 2008, 73, 2641. (c) Miller, K. M.;
Huang, W.-S.; Jamison, T. F. J. Am. Chem. Soc. 2003, 125, 3442.
(d) Montgomery, J.; Sormunen, G. J. Top. Curr. Chem. 2007, 279, 1.
(e) Malik, H. A.; Sormunen, G. J.; Montgomery, J. J. Am. Chem. Soc.
2010, 132, 5966. (f) Kumar, P.; Troast, D. M.; Cella, R.; Louie, J. J. Am.
Chem. Soc. 2011, 133, 7719.
r
10.1021/ol300534j
Published on Web 04/02/2012
2012 American Chemical Society