COMMUNICATIONS
Antonino Ferraro et al.
[2] a) E. Forestim, G. Palmieri, M. Petrini, R. Profeta, Org.
Biomol. Chem. 2003, 1, 4275–4281; b) R. Ballini, M.
Petrini, Tetrahedron 2004, 60, 1017–1047.
[3] a) D. Lucet, T. Le Gall, C. Mioskowski, Angew. Chem.
1998, 110, 2724–2772; Angew. Chem. Int. Ed. 1998, 37,
2580–2627; b) J. Wu, D. Wang, F. Wu, B. Wan, J. Org.
Chem. 2013, 78, 5611–5617; c) C. A. Sandoval, T.
Ohkuma, K. Muniz, R. Noyori, J. Am. Chem. Soc.
2003, 125, 13490–13503; d) H. Ooka, N. Arai, K.
Azuma, N. Kurono, T. Ohkuma, J. Org. Chem. 2008,
73, 9084–9093.
[4] B. Shen, J. N. Johnston, Org. Lett. 2008, 10, 4397–4400.
[5] a) F. A. Davis, Y. Zhang, D. Li, Tetrahedron Lett. 2007,
48, 7838–7840; b) M. E. Flanagan, T. A. Blumenkopf,
W. H. Brissette, M. F. Brown, J. M. Casavant, C. Shang-
Poa, J. L. Doty, E. A. Elliott, M. B. Fisher, M. Hines, C.
Kent, E. M. Kudlacz, B. M. Lillie, K. S. Magnuson, S. P.
McCurdy, M. J. Munchhof, B. D. Perry, P. S. Sawyer,
T. J. Strelevitz, C. Subramanyam, J. Sun, D. A. Whipple,
P. S. Changelian, J. Med. Chem. 2010, 53, 8468–8484.
[6] G. Deray, C. Bagnis, R. Brouard, J. Necciari, A. F.
Leenhardt, F. Raymond, A. Baumelou, Clin. Drug In-
vestig. 1998, 16, 319–328.
[7] J.-J. Shie, J.-M. Fang, S.-Y. Wang, K.-C. Tsai, Y.-S. E.
Cheng, A.-S. Yang, S.-C. Hsiao, C.-Y. Su, C.-H. Wong,
J. Am. Chem. Soc. 2007, 129, 11892–11893.
[8] W. Binder, J. S. Walker, Br. J. Pharmacol. 1998, 124,
647–654.
[9] a) B. Westermann, Angew. Chem. 2003, 115, 161–163;
Angew. Chem. Int. Ed. 2003, 42, 151–153; b) E. Mar-
ques-Lopez, P. Merino, T. Tejero, R. P. Herrera, Eur. J.
Org. Chem. 2009, 2401–2420; c) A. Noble, J. C. Ander-
son, Chem. Rev. 2013, 113, 2887–2939; d) H. Pellissier,
Recent Developments in Asymmetric Organocatalysis,
RSC Catalysis Series, 2010, Chapter 3, pp 123–149;
e) A. M. F. Phillips, Recent Advances on the Organoca-
talytic Asymmetric Aza-Henry Reaction, in: Current Or-
ganocatalysis, 2016, Vol. 3, (Ed: B. K. Banik), DOI:
10.2174/2213337202666150908210627.
Scheme 5. Tentative reaction model.
metrical fit between the electrostatically complemen-
tary functionalities of the catalyst and a transition
state leading to (S)-products. Moreover, the results re-
ported in Scheme 4 suggest that while the stereo-
chemistry of the conjugate addition of the hydride is
controlled very efficiently by the catalyst, there is
little, if any, stereocontrol over the ensuing proton-
transfer step(s) to the prochiral carbon of the nitro-
nate.[30] The two diastereomers at the stereogenic
centre a to the nitro group are in fact generated in
nearly equimolar amounts.[31]
In summary, we have developed a highly enantiose-
lective organocatalytic transfer hydrogenation of b-
acylamino and b-tert-butyloxycarbonylamino nitroole-
fins 1 with a simple thiourea catalyst and Hantzsch
esters 2 as hydrogen source for the direct access to
enantiomerically pure b-amino nitroalkanes.
Experimental Section
General Procedure for the Asymmetric Transfer
Hydrogenation
[10] a) L. Wang, S. Shirakawa, K. Maruoka, Angew. Chem.
2011, 123, 5439–5442; Angew. Chem. Int. Ed. 2011, 50,
5327–5330; b) D. Uraguchi, D. Nakashima, T. Ooi, J.
Am. Chem. Soc. 2009, 131, 7242–7243; c) L. Lykke, D.
Monge, M. Nielsen, K. A. Jorgensen, Chem. Eur. J.
2010, 16, 13330–13334; d) J. Wang, H. Li, L. Zu, W.
Wang, Org. Lett. 2006, 8, 1391–1394.
In a screw-cap, round-bottom vial, catalyst 3a (3.9 mg,
0.0075 mmol, 0.05 equiv.) and Hantzsch ester 2b (56 mg,
0.18 mmol, 1.2 equiv.) were added to a stirred solution of
1 (0.15 mmol) in toluene (510 mL, 0.3M). The vial was satu-
rated with nitrogen and closed with the cap. The reaction
mixture was stirred for 14 h at 408C (Pg=Ac) or for 18 h at
408C (Pg=Boc, R1 =aromatic) or for 24 h at 608C (Pg=
Boc, R1 =aliphatic). The resulting mixture was purified by
column chromatography to afford product 4.
[11] T. Mukaiyama, H. Ishikawa, H. Koshino, Y. Hayashi,
Chem. Eur. J. 2013, 19, 17789–17800.
[12] X.-W. Liu, Y. Yan, Y.-Q. Wang, C. Wang, J. Sun, Chem.
Eur. J. 2012, 18, 9204–9207.
[13] For the hydrogenation of nitroalkenes see: a) S. Li, K.
Huang, B. Cao, J. Zhang, W. Wu, X. Zhang, Angew.
Chem. 2012, 124, 8701–8704; Angew. Chem. Int. Ed.
2012, 51, 8573–8576; b) Q. Zhao, S. Li, K. Huang, R.
Wang, X. Zhang, Org. Lett. 2013, 15, 4014–4017; c) S.
Li, K. Huang, J. Zhang, W. Wu, X. Zhang, Chem. Eur.
J. 2013, 19, 10840–10844. For transfer hydrogenation
and conjugate addition, see: d) C. Czekelius, E. M. Car-
reira, Angew. Chem. 2003, 115, 4941–4943; Angew.
Chem. Int. Ed. 2003, 42, 4793–4795; e) C. Czekelius,
E. M. Carreira, Org. Lett. 2004, 6, 4575–4577; f) C. Cze-
kelius, E. M. Carreira, Org. Process Res. Dev. 2007, 11,
Acknowledgements
We acknowledge financial support from the University of Bo-
logna (RFO program).
References
[1] N. Ono, The Nitro Group in Organic Synthesis, John
Wiley & Sons, New York, 2001.
1564
ꢀ 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 2016, 358, 1561 – 1565