Table 1 Linear and nonlinear optical properties of nanoscale propeller-
region of the chromophores and to avoid contamination by two-
photon fluorescence.12 Comparison of homologous molecules
bearing electron-releasing (1,2) or electron-withdrawing (3,4)
end groups clearly shows that increasing the donating or
accepting strength of the three terminal substituents results in a
significant enhancement of b (Table 1), providing evidence that
MDICT strongly influences the nonlinear responses. Following
this observation, increasing the distance between the core and
the periphery appeared as a rational way to boost the nonlinear
responses. This strategy proved particularly successful: mole-
cule 5 was found to exhibit a ∑b(0)∑ value about six times larger
than molecule 2, whereas molecule 6 exhibits a first-order
hyperpolarisability one order of magnitude larger than its
shorter analogue 3, while increasing by no more than 36% in
weight and maintaining suitable transparency in the visible
region. This is particularly advantageous in terms of efficiency-
transparency trade-off: molecule 6 exhibits a ∑b(0)∑ value about
forty times larger than the prototypical push–pull compound p-
nitroaniline (pNA), with a molecular weight no more than eight
times larger.
Finally, by grafting either electron-donating or electron-
withdrawing groups on the edges of conjugated blades branched
on a triphenylbenzene crux, propeller-shaped molecules ex-
hibiting high NLO properties and wide transparency in the
visible range have been designed. Optimization leads to
compounds presenting an improved transparency–nonlinearity
trade-off (∑b(0)∑ = 500 10230 esu, lmax = 377 nm) as
compared to tris-donor tris-acceptor octupolar 2D molecules. In
addition, the superlinear dependence of b on size and their
particular concave shape makes elongated analogues attractive
candidates for incorporation in polymeric materials.
shaped molecules derived from triphenylbenzene
a
lmax(abs)a
/nm
bHLS
/
∑b∑c/
∑b(0)∑d/
Dn˜b/cm21 lHLS/nm 10230 esu 10230 esu 10230 esu
1
344
387
342
385e
407
377
170
790
510
1060
—
1064
1064
1064
1340
1340
1340
1064
5
29
30
16
94
97
227
486
810
32
8
50
51
140
278
510
12
2
3
4e
5
70
150
250
10
6
1830
—
pNA 348
a In chloroform. b Absorption solvatochromic shift
=
1/lmax(toluene)
bi2jk
21/l max(DMSO). c The modulus ∑b∑ =
Â
is derived from bHLS
ijk
21
according to ∑b∑ =
bHLS for molecules with C3h symmetry, and to ∑b∑
2
35
= bzzz
=
bHLS for 1D dipolar chromophores such as p-nitroaniline
6
(pNA). d Static values are calculated using a two-level dispersion factor.6b
e In DMSO.
cm21 for molecule 2 in chloroform, and 8500 cm21 for
molecule 4 in DMSO) corroborate that important nuclear
reorganisation is taking place after excitation, prior to emission
as a result of significant electronic redistribution.
The first hyperpolarisabilities b have been determined by
performing harmonic light scattering (HLS) experiments which
yield the HLS molecular averaged hyperpolarisability A(b2) =
bHLS.
11 HLS experiments were performed at 1.064 or 1.34 mm
in order to locate the second harmonic signal in the transparency
Notes and references
1 See for instance the special issue of Chemical Physics devoted to
molecular nonlinear optics: Chem. Phys., 1999, 245, for current trends
in molecular NLO.
2 D. A. Parthenopoulos and P. M. Rentzepis, Science, 1989, 245, 842; Y.
Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson
and W. H. Steier, Science, 2000, 288, 119.
3 M. Blanchard-Desce, V. Alain, P. V. Bedworth, S. R. Marder, A. Fort,
C. Runser, M. Barzoukas, S. Lebus and R. Wortmann, Chem. Eur. J.,
1997, 3, 1091; V. Alain, M. Blanchard-Desce, I. Ledoux and J. Zyss,
Chem. Commun., 2000, 353.
4 V. Alain, L. Thouin, M. Blanchard-Desce, U. Gubler, C. Bosshard, P.
Günter, J. Muller, A. Fort and M. Barzoukas, Adv. Mater., 1999, 11,
1210; V. Alain, S. Rédoglia, M. Blanchard-Desce, S. Lebus, K.
Lukaszuk, R. Wortmann, U. Gubler, C. Bosshard and P. Günter, Chem.
Phys., 1999, 245, 51.
5 M. S. Wong, C. Bosshard, F. Pang and P. Günter, Adv. Mater., 1996, 8,
677; S. Yokoyama, T. Nakahama, A. Otomo and S. Mashiko, J. Am.
Chem. Soc., 2000, 122, 3174.
6 I. Ledoux, J. Zyss, J. S. Siegel, J. Brienne and J.-M. Lehn, Chem. Phys.
Lett., 1990, 172, 440; J. Zyss, J. Chem. Phys., 1993, 98, 6583.
7 C. Lambert, E. Schmälzin, K. Meerholz and C. Bräuchle, Chem. Eur. J.,
1998, 4, 512; C. Lambert, W. Gaschler, E. Schmälzin, K. Meerholz and
C. Bräuchle, J. Chem. Soc., Perkin, Trans., 2, 1999, 577; M. Blanchard-
Desce, J.-B. Baudin, L. Jullien, R. Lorne, O. Ruel, S. Brasselet and J.
Zyss, Opt. Mat., 1999, 12, 333; J. J. Wolff, F. Siegler, R. Matschiner and
R. Wortmann, Angew. Chem., Int. Ed., 2000, 39, 1436.
8 D. R. Greve, S. S. Schouchgaard, T. Geisler, J. C. Petersen and T.
Bjørnholm, Adv. Mater., 1997, 9, 1113; A. M. McDonagh, M. G.
Humphrey, M. Samoc, B. Luther-Davis, S. Houbrechts, T. Wada, H.
Sasabe and A. Persoons, J. Am. Chem. Soc., 1999, 121, 1405.
9 C. Dhenault, I. Ledoux, I. D. W. Samuel, J. Zyss, M. Bourgault and H.
Le Bozec, Nature, 1995, 374, 339; B. del Rey, U. Keller, T. Torres, G.
Rojo, F. Agulló-López, S. Nonell, C. Martí, S. Brasselet, I. Ledoux and
J. Zyss, J. Am. Chem. Soc., 1998, 120, 12 808.
10 E. Weber, M. Hecker, E. Koepp and W. Orlia, J. Chem. Soc., Perkin,
Trans. 2, 1988, 1251.
11 R. W. Terhune, P. D. Maker and C. M. Savage, Phys. Rev. Lett., 1965,
14, 681; K. Clays and A. Persoons, Phys. Rev. Lett., 1991, 66, 2980.
12 M. C. Flipse, R. de Jonge, R. H. Woudenberg, A. W. Marsman, C. A.
van Walree and L. W. Jenneskens, Chem. Phys. Lett., 1995, 245, 297;
I. D. Morrison, R. G. Denning, W. M. Laidlaw and M. A. Stammers,
Rev. Sci. Instrum., 1996, 67, 1445.
Fig. 1 Solvatochromic absorption (a) and emission (b) behaviour of
molecule 2.
924
Chem. Commun., 2001, 923–924