ORGANIC
LETTERS
2012
Vol. 14, No. 11
2655–2657
An Unexpected Silver Triflate Catalyzed
Reaction of 2-Alkynylbenzaldehyde with
2-Isocyanoacetate
Danqing Zheng,† Shaoyu Li,† and Jie Wu*,†,‡
Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433,
China, and State Key Laboratory of Organometallic Chemistry, Shanghai Institute of
Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
Received April 8, 2012
ABSTRACT
An unexpected silver triflate catalyzed reaction of 2-alkynylbenzaldehyde with 2-isocyanoacetate provides an efficient route for the generation of
isoquinolines. The reaction proceeds smoothly in air under mild conditions with high efficiency.
In the past decade, we have witnessed significant pro-
gress in the pursuit of efficient methods for the preparation
of natural product-like compounds with privileged scaffolds
in the studies of chemical genetics.1 We have also been
involved in the construction of small libraries of N-hetero-
cycles using the strategy of diversity-oriented synthesis.2
Recently, we reported an efficient route for the synthesis
of tetrahydroindeno[2,1-b]pyrroles via a base-promoted
tandem reaction3 of (E)-2-alkynylphenylchalcone with
2-isocyanoacetate (Scheme 1, eq 1).2a From this result,
we recognized that 2-isocyanoacetate, which has been
widely used in organic synthesis,4,5 was a useful building
block for the generation of N-heterocycles. Since (E)-2-
alkynylphenylchalcone is prepared from a condensation of
2-alkynylbenzaldehyde with an active methylene com-
pound, we envisioned that 2-alkynylbenzaldehyde might
be applied in the reaction with isocyanoacetate as well due
to their structural similarity. The proposed transformation
is presented in Scheme 1. We anticipated that an oxazole-
incorporated compound C would be formed via a similar
process (Scheme 1, eq 2). We began our studies with the
† Fudan University.
‡ Chinese Academy of Sciences.
(1) (a) Walsh, D. P.; Chang, Y.-T. Chem. Rev. 2006, 106, 2476. (b)
Arya, P.; Chou, D. T. H.; Baek, M.-G. Angew. Chem., Int. Ed. 2001, 40,
339. (c) Schreiber, S. L. Science 2000, 287, 1964. (d) Burke, M. D.;
Schreiber, S. L. Angew. Chem., Int. Ed. 2004, 43, 46. (e) Schreiber, S. L.
Nature 2009, 457, 153. (f) Tan, D. S. Nat. Chem. Biol. 2005, 1, 74. (g)
Cordier, C.; Morton, D.; Murrison, S.; Nelson, A.; O’Leary-Steele, C.
Nat. Prod. Rep. 2008, 25, 719.
(2) For recent selected examples: (a) Zheng, D.; Li, S.; Luo, Y.; Wu,
J. Org. Lett. 2011, 13, 6402. (b) Ye, S.; Liu, G.; Pu, S.; Wu, J. Org. Lett.
2012, 14, 70. (c) Luo, Y.; Wu, J. Org. Lett. 2012, 14, 1592. (d) Qiu, G.;
Liu, G.; Pu, S.; Wu, J. Chem. Commun. 2012, 48, 2903. (e) Qiu, G.; He,
Y.; Wu, J. Chem. Commun. 2012, 48, 3836. (e) Pan, X.; Luo, Y.; Liu, G.;
Pu, S.; Wu, J. Adv. Synth. Catal. 2012, 354, 171.
(4) For reviews: (a) Suginome, M.; Ito, Y. In Science of Synthesis, Vol.
€
19; Murahashi, S.-I., Ed.; Thieme: Stuttgart, 2004; p 445. (b) Domling,
€
A. Chem. Rev. 2006, 106, 17. (c) Domling, A.; Ugi, I. Angew. Chem., Int.
Ed. 2000, 39, 3168. (d) Lygin, A. V.; Meijere, A. D. Angew. Chem., Int.
Ed. 2010, 49, 9094. (e) Gulevich, A. V.; Zhdanko, A. G.; Orru, R. V. A.;
Nenajdenko, V. G. Chem. Rev. 2010, 110, 5235.
(3) For reviews, see: (a) Montgomery, J. Angew. Chem., Int. Ed. 2004,
43, 3890. (b) Negishi, E.; Coperet, C.; Ma, S.; Liou, S. Y.; Liu, F. Chem.
Rev. 1996, 96, 365. (c) Tietze, L. F. Chem. Rev. 1996, 96, 115. (d) Grigg,
R.; Sridharan, V. J. Organomet. Chem. 1999, 576, 65. (e) Miura, T.;
Murakami, M. Chem. Commun. 2007, 217. (f) Malacria, M. Chem. Rev.
1996, 96, 289. (g) Nicolaou, K. C.; Montagnon, T.; Snyder, S. A. Chem.
Commun. 2003, 551. (h) Nicolaou, K. C.; Edmonds, D. J.; Bulger, P. G.
(5) For recent examples, see: (a) Fayol, A.; Zhu, J. Org. Lett. 2004, 6,
115. (b) Fayol, A.; Zhu, J. Org. Lett. 2005, 7, 239. (c) Mossetti, R.; Pirali, T.;
Tron, G. C.; Zhu, J. Org. Lett. 2010, 12, 820. (d) Wang, S.; Wang, M.;
Wang, D.; Zhu, J. Org. Lett. 2007, 9, 3615. (e) Yue, T.; Wang, M.; Wang,
D.; Masson, G.; Zhu, J. Angew. Chem., Int. Ed. 2009, 48, 6717. (f) Bonne,
D.; Dekhane, M.; Zhu, J. Angew. Chem., Int. Ed. 2006, 45, 2485. (g) Fayol,
A.; Zhu, J. Angew. Chem., Int. Ed. 2002, 41, 3633. (h) Lalli, C.; Bouma,
M. J.; Bonne, D.; Masson, G.; Zhu, J. Chem.;Eur. J. 2011, 17, 880. (i) Li,
Y.;Xu, X.;Tan, J.;Xia, C.;Zhang, D.;Liu, Q.J. Am. Chem. Soc. 2011, 133,
1775. (j) Zhou, H.; Zhang, W.; Yan, B. J. Comb. Chem. 2010, 12, 206. (k)
Monge, D.; Jensen, K. L.; Marın, I.; Jørgensen, K. A. Org. Lett. 2011, 13, 328.
€
Angew. Chem., Int. Ed. 2006, 45, 7134. (i) Enders, D.; Grondal, C.; Huttl,
M. R. M. Angew. Chem., Int. Ed. 2007, 46, 1570. (j) Tietze, L. F.;
Brasche, G.; Gericke, K. Domino Reactions in Organic Synthesis; Wiley-
VCH: Weinheim, Germany, 2006.
r
10.1021/ol300901x
2012 American Chemical Society
Published on Web 05/22/2012