M. Kotora, J. Roithovꢁ et al.
mixture was stirred until dissolved (5 min). Compound
6
(51.4 mg,
[6] Y. Hu, G. B. Boursalian, V. Gandon, R. Padilla, H. Shen, T. V. Timo-
feeva, P. Tongwa, K. P. C. Vollhardt, A. A. Yakovenko, Angew.
Chem. 2011, 123, 9585–9589; Angew. Chem. Int. Ed. 2011, 50, 9413–
9417.
0.1 mmol) and alkyne 2 (2–8 equiv) were added and the reaction mixture
was heated in an oil bath at 1308C for 5 h. The volatile compounds were
removed under reduced pressure and column chromatography of the res-
idue, followed by preparative TLC or crystallization, yielded 7.
[7] For various transition metals, see: a) C. Perthuisot, B. L. Edelbach,
D. L. Zubris, N. Simhai, C. N. Iverson, C. Mꢅller, T. Satoh, W. D.
Jones, J. Mol. Catal. A 2002, 189, 157–168; for Ni, see: b) J. Eisch,
C.-H. Jun, S. R. Gala, M. P. Sigalas, O. Eisenstein, R. H. Crabtree, J.
S. R. Gala, M. P. Sigalas, O. Eisenstein, R. H. Crabtree, Organome-
Fe, see: i) W.-Y. Yeh, S. C. N. Hsu, S.-M. Peng; G.-H. Lee, Organo-
2477–2483; for Pd, see: j) K. Yu, H. Li, E. J. Watson, K. L. Virkaitis,
3559; for Co, see: k) C. Perthuisot, B. L. Edelbach, D. L. Zubris,
Compound 7b: Compound
6 (44 mg, 0.086 mmol), 2b (30.1 mg,
0.17 mmol), 4 h. Filtration through a short pad of silica gel (CH2Cl2),
column chromatography (20:1, then 10:1 hexane/CH2Cl2) yielded 7b
(20 mg, 27%) as a yellowish solid. Rf (10:1 hexane/CH2Cl2)=0.32; m.p.
3138C; 1H NMR (300 MHz, CDCl3): d=0.21 (s, 18H), 0.57 (s, 18H),
6.00–6.19 (m, 6H), 6.55–6.70 (m. 4H), 6.86–6.92 (m, 2H), 6.92–7.00 (ap-
parent t, J=7.8, 7.8, 0.9 Hz, 2H), 7.16–7.23 (m, 2H), 7.32–7.45 (m, 4H),
7.78 (s, 2H), 8.97 (s, 2H), 9.19 ppm (s, 2H); 13C NMR (150 MHz, CDCl3):
d=1.63 (3C), 2.06 (3C), 121.13, 125.45, 125.64 (2C), 126.19, 126.80,
127.75, 128.22, 129.52, 129.83, 130.42, 130.56, 131.25, 132.27, 133.40 (2C),
135.32, 136.86, 138.18, 139.88, 140.35, 142.71, 142.93 ppm; IR (KBr): n˜ =
2953, 1440, 1250, 1122, 853, 839, 757, 699 cmÀ1; MS (ES+): m/z (%): 894
(80) [M+Na]+, 893 (100), 822 (14), 821 (19), 783 (10), 390 (4); HRMS:
m/z calcd for C58H62Si4: 871.3977; found: 871.3986.
The computational DFT study was performed by using the B3LYP[17–20]
functional as implemented in the Gaussian 09 package.[21] Basis sets cc-
VTZ or cc-VDZ for molecules without iridium (explicitly denoted in
Table 3) and a combination of LAN2DZ for iridium and cc-VDZ for the
remaining atoms of the iridium-containing intermediates (denoted as
LAN2DZ:cc-pVDZ) were used.[22,23] Frequency analysis was performed
for all optimized structures to assure that they corresponded to the
minima on the potential-energy surface and to calculate the zero-point
energy. The MP2 single-point calculations were performed for the opti-
mized geometries. The zero-point energy and Gibbs energy corrections
were calculated at the B3LYP level and added to the MP2 energies. All
energies given in the paper refer to 0 and 298 K. The test calculations on
the effect of the dispersion interactions were made at the levels of theory
B3LYP/cc-pVTZ, B97D/cc-pVTZ,[24] and MP2/cc-pVTZ//B3LYP/cc-
pVTZ. Note that the use of B3LYP energies alone lead to different
mechanistic predictions. The B3LYP level does not cover the dispersion
interactions, which however play an important role in the studied reac-
tion. Therefore, the B3LYP energies cannot be considered as correct.
[10] Cyclotrimerization of ferrocenyl alkynes: a) K. Schlçgl, H. Soukup,
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
Cꢂsarovꢁ, J. Sedlꢁcek, J. Vohlꢂdal, M. Polꢁsek, Collect. Czech. Chem.
ˇ
ˇ
Commun. 1997, 62, 1577–1584; d) L. Dufkovꢁ, I. Cꢂsarovꢁ, P. Step-
ˇ
nicka, M. Kotora, Eur. J. Org. Chem. 2003, 2882–2887; e) L
ˇ
ˇ
ˇ
ˇ
Dufkovꢁ, H. Matsumura, D. Necas, P. Stepnicka, F. Uhlꢂk, M.
Kotora, Collect. Czech. Chem. Commun. 2004, 69, 351–364.
ˇ
ˇ
ˇ
ˇ
[11] D. Necas, M. Kotora, P. Stepnicka, Collect. Czech. Chem. Commun.
2003, 68, 1897–1903.
CCDC-835379 (3h), CCDC-835380 (7b), and CCDC-835381 (3g) contain
the supplementary crystallographic data for this paper. These data can be
obtained free of charge from The Cambridge Crystallographic Data
[12] Our previous attempts to carry out catalytic homocyclotrimerization
of 2h in the presence of Rh, Ru, or Ni-catalysts did not yield any
product. Also co-cyclotrimerization with various 1,7-hepta- and 1,8-
octadiynes did not give the expected products and only homocyclo-
trimerization of the diynes was observed. Hexaferrocenylbenzene
was prepared by Vollhardt et al. by Negishi cross-coupling: Y. Yu,
A. D. Bond, P. W. Leonard, U. J. Lorenz, T. V. Timofeeva, K. P. C.
Acknowledgements
[13] The participation of di-O-toluoyl-1-(propyn-1-yl)deoxyribose in cy-
ˇ
clotrimerization was reported, see: P. Novꢁk, S. Cꢂhalovꢁ, M. Otmar,
The authors acknowledge financial support from the Ministry of Educa-
tion, Youth and Sports of the Czech Republic (grant nos. LC06070 and
MSM0021620857), Charles University in Prague (grant no. SVV 263205/
2011), and the Grant Agency of the Czech Republic (207/11/0338)
M. Hocek, M. Kotora, Tetrahedron 2008, 64, 5200–5207.
[14] D. L. Mohler, S. Kumaraswamy, A. Stanger, K. P. C. Vollhardt, Syn-
lett 2006, 18, 2981–2984.
ˇ
[15] S. Kumaraswamy, S. S. Jalisatgi, A. J. Matzger, O. S. Miljanic, K. P. C.
[2] R. Mitsuhashi, Y Suzuki, Y. Yamanari, H. Mitamura, T. Kambe, N.
Ikeda, H. Okamoto, A. Fujiwara, M. Yamaji, N. Kawasaki, Y.
[3] For recent papers on phenanthrene synthesis, see: a) A. Matsumoto,
14006–14008; c) A. G. Neo, C. Lꢃpez, V. Romero, B. Antelo, J. De-
lamano, A. Pꢄrez, D. Fernꢁndez, J. F. Almeida, L. Castedo, G. Tojo,
[4] a) H. Okamoto, M. Yamaji, S. Gohda, Y. Kubozono, N. Komura, K.
[5] T.-A. Chen, T.-J. Lee, M.-Y. Lin, S. M. A. Sohel, E. W.-G. Diau, S.-F.
[21] Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schle-
gel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V.
Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X.
Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Son-
nenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,
M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven,
J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J.
Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J.
Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar,
4206
ꢀ 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Chem. Eur. J. 2012, 18, 4200 – 4207