D. A. Devalankar, A. Sudalai / Tetrahedron Letters 53 (2012) 3213–3215
3215
Haroutounian, S. A. Tetrahedron Lett. 1999, 40, 6869–6870; (f) Yang, C.; Liao,
L.; Xu, Y.; Zhang, H.; Xia, P.; Zhou, W. Tetrahedron: Asymmetry 1999, 10, 2311–
2318; (g) Yang, C.-F.; Xu, Y.-M.; Liao, L.-X.; Zhou, W.-S. Tetrahedron Lett. 1998,
39, 9227–9228; (h) Dransfield, P. J.; Gore, P. M.; Shipman, M.; Slawin, A. M. Z.
Chem. Commun. 2002, 150–151; (i) Luker, T.; Hiemstra, H.; Speckamp, W. N. J.
Org. Chem. 1997, 62, 3592–3596; (j) Herdeis, C.; Telser, J. Eur. J. Org. Chem. 1999,
1407–1414; (k) Ma, N.; Ma, D. Tetrahedron: Asymmetry 2003, 14, 1403–1406; (l)
Dransfield, P. J.; Gore, P. M.; Prokes, I.; Shipman, M.; Slawin, A. M. Z. Org. Biomol.
Chem. 2003, 1, 2723–2733; (m) Kokatla, H. P.; Lahiri, R.; Kancharla, P. K.; Doddi,
V. R.; Vankar, Y. D. J. Org. Chem. 2010, 75, 4608–4611; (n) Ojima, I.; Vidal, E. S. J.
Org. Chem. 1998, 63, 7999–8003; (o) Saitoh, Y.; Moriyama, Y.; Hirota, H.;
Takahashi, T.; Khuong-Huu, Q. Bull. Chem. Soc. Jpn. 1981, 54, 488–492; (p)
Abraham, E.; Brock, E. A.; Candela-Lena, J. I.; Davies, S. G.; Georgious, M.;
Nicholson, R. L.; Perkins, J. H.; Roberts, P. M.; Russell, A. J.; Sanchez-Fernandez,
E. M.; Scott, P. M.; Smith, A. D.; Thomson, J. E. Org. Biomol. Chem. 2008, 6, 1665–
1673; (q) Fuhshuku, K.; Mori, K. Tetrahedron: Asymmetry 2007, 18, 2104–2107;
(r) Liu, R.-C.; Wei, J.-H.; Wei, B.-G.; Lin, G.-Q. Tetrahedron: Asymmetry 2008, 19,
2731–2734; (s) Saitoh, Y.; Moriyama, Y.; Takahashi, T.; Khuong-Huu, Q.
Tetrahedron Lett. 1980, 21, 75–78; (t) Kim, I. S.; Ryu, C. B.; Li, Q. R.; Zee, O. P.;
Jung, Y. H. Tetrahedron Lett. 2007, 48, 6258–6261; (u) Garcia, E. B. A.;
Colmenares, J. C. Tetrahedron Lett. 2008, 49, 6972–6973; (v) Jourdant, A.; Zhu,
J. Heterocycles 2004, 64, 249–259.
deoxoprosophylline 2 in quantitative yield. The spectral data and
optical rotation of the synthesized (+)-deoxoprosophylline 2 are in
good agreement with reported values.6,12
In conclusion, we have described a short and efficient enantio-
selective synthesis of (+)-deoxoprosophylline 2 with an overall
yield of 17.5% and high optical purity, that are achieved using
two-stereocentered Co-catalyzed HKR of racemic azido epoxides.
The other operationally simple reaction sequences include Wittig
reaction and diastereoselective intramolecular reductive cycliza-
tion. This strategy is expected to find wide scope for the synthesis
of other similar multifunctionalized piperidine alkaloids.
Acknowledgments
D.A.D. thanks the CSIR, New Delhi for the award of Senior
Research Fellowship. The authors are also thankful to Dr. V.V.
Ranade, Chairman, Chemical Engineering and Process Develop-
ment Division for his constant encouragement and support.
7. (a) Reddy, R. S.; Chouthaiwale, P. V.; Suryavanshi, G.; Chavan, V. B.; Sudalai, A.
Chem. Commun. 2010, 46, 5012–5014; (b) Tokunaga, M.; Larrow, J. F.; Kakiuchi,
F.; Jacobsen, E. N. Science 1997, 277, 936–938.
8. Grieco, P. A.; Pogonowski, C. S. J. Am. Chem. Soc. 1973, 95, 3071–3072.
9. Takano, S.; Sugihara, T.; Satoh, S.; Ogasawara, K. J. Am. Chem. Soc. 1988, 110,
6467–6471.
Supplementary data
Supplementary data associated with this article can be found, in
10. Physical and spectral data for (2R,3R)-3-azido-4-(benzyloxy)butane-1,2-diol (9):
Colorless liquid; ½a D25
ꢁ
= ꢀ37.8 (c 1, CHCl3); IR: (CHCl3, cmꢀ1) 1271, 1453, 2099,
2870, 2929, 3384; 1H NMR (200 MHz, CDCl3): d 1.60 (br s, 1H), 2.81 (br s, 1H),
3.59–3.83 (m, 6H), 4.59 (s, 2H), 7.34 (m, 5H); 13C NMR (50 MHz, CDCl3): d
62.02, 63.37, 69.94, 71.36, 73.55, 127.67, 127.94, 128.50, 137.31; Anal. Calcd
for C11H15N3O3 requires C, 55.69; H, 6.37; N, 17.71; Found C, 55.70; H, 6.48; N,
17.65%; Optical purity: 99% ee determined by HPLC analysis (Chiral OD-H
column, n-hexane/2-propanol (90:10), 0.5 mL/min, 254 nm). Retention time:
tmajor = 21.25 and tminor = 24.82 min.
References and notes
1. (a) Schneider, M. J. Pyridine and Piperidine Alkaloids: An Update In Alkaloids
Chemical and Biological Perspectives; Pelletier, S. W., Ed.; Pergamon: Oxford,
1996; Vol. 10, pp 155–299; (b) Fodor, G. B.; Colasanti, B. The Pyridine and
Piperidine Alkaloids: Chemistry and Pharmacology In Alkaloids: Chemical and
Biological Perspectives; Pelletier, S. W., Ed.; Wiley-Interscience: New York, 1985;
Vol. 3, pp 1–90.
2. (a) Ratle, G.; Monseur, X.; Das, B.; Yassi, J.; Khuong-Huu, Q.; Goutrarel, R. Bull.
Soc. Chim. Fr. 1996, 2945–2947; (b) Khuong-Huu, Q.; Rutle, G.; Monseur, X.;
Goutrarel, R. Bull. Soc. Chim. Belg. 1972, 81, 425–458.
3. (a) Strunz, G. M.; Findlay, J. A. In The Alkaloids; Brossi, A., Ed.; Academic: New
York, 1985; Vol. 26, pp 89–183; (b) Bourinet, P.; Quevauviller, A. Compt. Rend.
Soc. Biol. 1968, 162, 1138–1140; (c) Bourinet, P.; Quevauviller, A. Ann. Pharm. Fr.
1968, 26, 787–796.
4. (a) Asano, N. Glycobiology 2003, 13, 93; (b) Junge, B.; Matzke, M.; Stoltefuss, J. In
Handbook of Experimental Pharmacology; Kuhlmann, J., Puls, W., Eds.; Springer:
Berlin, Heidelberg, New York, 1996; Vol. 119, pp 411–482.
11. Physical and spectral data for (S)-2-((S)-1-azido-2-(benzyloxy)ethyl)oxirane, (10):
Colorless liquid; ½a D25
ꢁ
= +29.3 (c 1, CHCl3) {lit.9 a 3D0
½ ꢁ = -30.2 for its antipode (c 1,
CHCl3)}; IR: (CHCl3, cmꢀ1) 1264, 1453, 2102, 2864; 1H NMR (200 MHz, CDCl3):
d 2.74–2.83 (m, 2H), 3.05–3.11 (m, 1H), 3.44–3.52 (m, 1H), 3.57–3.73 (m, 2H),
4.59 (s, 2H), 7.28–7.39 (m, 5H); 13C NMR (50 MHz, CDCl3): d 45.03, 50.53,
61.70, 69.97, 73.46, 127.57, 127.83, 128.44, 137.41; Anal. Calcd for C11H13N3O2
requires C, 60.26; H, 5.98; N, 19.17; Found C, 60.24; H, 5.90; N, 19.20%; Optical
purity: 99% ee determined by HPLC analysis (Chiral OD-H column, n-hexane/2-
propanol (95:5), 0.5 mL/min, 254 nm) Retention time: tminor = 13.51 and
tmajor = 16.20 min.
12. Physical and spectral data for (+)-deoxoprosophylline (2):Colorless solid, mp
85 °C {lit.6b mp 85–86 °C}; ½a 2D5
ꢁ
+13.5 (c 1, CHCl3) {lit.6b a 2D4
½ ꢁ +13.5 (c 0.3,
CHCl3)}; IR: (CHCl3) 1059, 1467, 2851, 2922, 3169, 3266; 1H NMR (200 MHz,
CDCl3): d 0.88 (t, J = 6.8 Hz, 3H), 1.26 (br s, 24H), 1.71–1.80 (m, 1H), 1.98–2.06
(m, 1H), 2.43–2.60 (m, 2H), 2.77–3.20 (br, 3H), 3.31–3.51 (t, J = 10.6 Hz, 1H),
3.68 (dd, J = 10.9, 5 Hz, 1H), 3.81 (dd, J = 10.9, 4.3 Hz, 1H); 13C NMR (50 MHz,
CDCl3): d 14.16, 22.71, 26.33, 29.40, 29.70, 29.89, 30.87, 31.95, 33.78, 36.44,
56.15, 63.37, 63.46, 69.30; Anal. Calcd for C18H37NO2 requires C, 72.19; H,
12.45, N, 4.68%; Found C, 72.26, H, 12.36, N, 4.70%.
5. Kolter, T.; Sandhoff, K. Angew. Chem., Int. Ed. 1999, 38, 1532–1568.
6. (a) Andres, J. M.; Pedrosa, R.; Perez-Encabo, A. Eur. J. Org. Chem. 2007, 1803–
1810; (b) Chavan, S. P.; Praveen, C. Tetrahedron Lett. 2004, 45, 421–423; (c)
Datta, A.; Kumar, J. S. R.; Roy, S. Tetrahedron 2001, 57, 1169–1173; (d) Jourdant,
A.; Zhu, J. Tetrahedron Lett. 2001, 42, 3431–3434; (e) Koulocheri, S. D.;