3584
N. Ikuma et al. / Tetrahedron Letters 53 (2012) 3581–3584
24%, and isolated yield is 15%) and recovered 1 (29.4 mg) and byproduct
References and notes
(8 mg). 1H NMR (600 MHz, CS2:CDCl3 = 3:1), Major isomer: d 5.06 (s, 1H), 5.20
(d, J = 11.4 Hz, 1H), 5.59 (d, J = 11.4 Hz, 1H), 7.56 (t, J = 8.4, 7.8 Hz, 1H,
overlapped with minor), 7.67 (d, J = 7.8 Hz, 1H, overlapped with minor), 8.18
(d, J = 8.4 Hz, 1H), 8.24 (s, 1H); Minor isomer: d 4.56 (s, 1H), 4.62 (d, J = 11.4 Hz,
1H), 5.13 (d, J = 11.4 Hz, 1H), 7.56 (t, J = 8.4, 7.8 Hz, 1H, overlapped with major),
7.67 (d, J = 7.8 Hz, 1H, overlapped with major), 8.31 (d, J = 8.4 Hz, 1H), 8.40 (s,
1H). 13C NMR(150 MHz, CS2:CDCl3 = 3:1) d 32.7(s, CH2), 85.7(s, C), 94.6(s, C),
127.8(s, CH), 130.0(s, CH), 130.3(s, CH), 134.0(s, CH), 163.3(s, C@O), except for
the signals assigned to the fulleroid sp2 carbons (125–155 ppm, See Fig. S2). IR
(KBr) 3438, 2929, 1727, 1282, 1251, 1086 cmÀ1. HRMS (FAB-MS): Calcd for
1. (a) Hirsch, A. Chemistry of the Fullerenes; Thieme: Stuttgart, 1994; (b) Diederich,
F.; Thilgen, C. Science 1996, 271, 317–323; (c) Hirsch, A.; Brettreich, M.
Fullerenes Chemistry and Reactions; Wiley-VCH Verlag GmbH
Weinheim, Germany, 2005.
& Co. KGaA:
2. (a) Balch, A. L.; Costa, D. A.; Noll, B. C.; Olmstead, M. M. J. Am. Chem. Soc. 1995,
117, 8926–8932; (b) Tajima, Y.; Takeuchi, K. J. Org. Chem. 2002, 67, 1696–1698.
3. Tajima, Y.; Hara, T.; Honma, T.; Matsumoto, S.; Takeuchi, K. Org. Lett. 2006, 8,
3203–3205.
4. (a) Smith, A. B.; Tokuyama, H.; Strongin, R. M.; Furst, G. T.; Romanow, W. J.;
Chait, B. T.; Mirza, U. A.; Haller, I. J. Am. Chem. Soc. 1995, 117, 9359–9360; (b)
Tsyboulski, D.; Heymann, D.; Bachilo, S. M.; Alemany, L. B.; Weisman, R. B. J.
Am. Chem. Soc. 2004, 126, 7350–7358.
5. (a) Suzuki, T.; Khemani, K. C.; Almarsson, O. Science 1991, 254, 1186–1188; (b)
Suzuki, T.; Li, Q.; Khemani, K. C.; Wudl, F. J. Am. Chem. Soc. 1992, 114, 7301–
7302; (c) Smith, A. B.; Strongin, R. M.; Brard, L.; Furst, G. T.; Romanow, W. J.;
Owens, K. G.; King, R. C. J. Am. Chem. Soc. 1993, 115, 5829–5830; (d) Hall, M. H.;
Shevlin, P.; Lu, H.; Gichuhi, A.; Shannon, C. J. Org. Chem. 2006, 71, 3357–3363.
C
68H7O3Cl 906.0084. Found 906.0112.
14. The low isolated yield (15%) of the 1:1 adducts 2a/2b is mainly due to the
incompletion of the reaction (to avoid further epoxidation) as well as the
column chromatographic isolation.
15. A literature survey showed the reactions of some sterically strained olefins
with mCPBA produce
a-hydroxyl esters, although the mechanism was not
discussed or featured to involve an epoxidation/acidic ring-opening sequence.
See: (a) Koerner, T.; Slebocka-Tilk, H.; Brown, R. S. J. Org. Chem. 1999, 64, 196–
201; (b) Zehnder, L. R.; Wei, L. L.; Hsung, R. P.; Cole, K. P.; McLaughlin, M. J.;
Shen, H. C.; Sklenicka, H. M.; Wang, J.; Zificsak, C. A. Org. Lett. 2001, 3, 2141–
2144; (c) Toselli, N.; Martin, D.; Achard, M.; Tenaglia, A.; Buono, G. J. Org. Chem.
2009, 74, 3783–3791.
6. Photolysis of
C60O3 lead to [5,6]-open fullerene oxide bearing high
regioselectivity at the bridgehead, similar to the fulleroid. See: (a) Weisman,
R. B.; Heymann, D.; Bachilo, S. M. J. Am. Chem. Soc. 2001, 123, 9720–9721; (b)
Escobedo, J. O.; Frey, A. E.; Strongin, R. M. Tetrahedron Lett. 2002, 43, 6117–
6119; (c) Tsyboulski, D.; Heymann, D.; Bachilo, S. M.; Alemany, L. B.; Weisman,
R. B. J. Am. Chem. Soc. 2004, 126, 7350–7358; (d) Yao, J. Y.; Yang, D. Z.; Xiao, Z.;
Gan, L. B.; Wang, Z. M. J. Org. Chem. 2009, 3528–3531.
16. DFT calculations were carried out with Gaussian 09 program. Its full citation is
shown in Supplementary data.
17. Both these cationic intermediates 1aOH+ and 1bOH+ were not calculated their
optimized geometries, because of the absence of solvent parameter on the
calculation to stabilize such zwitterionic state.
7. (a) Shea, K. J. Tetrahedron 1980, 36, 1683–1715; (b) Warner, P. M. Chem. Rev.
1989, 89, 1067–1093.
8. Weedon, B. R.; Haddon, R. C.; Spielmann, H. P.; Meier, M. S. J. Am. Chem. Soc.
1999, 121, 335–340.
9. (a) Kabe, Y.; Hachiya, H.; Saito, T.; Shimizu, D.; Ishiwata, M.; Suzuki, K.;
Yakushigawa, Y.; Ando, W. J. Organomet. Chem. 2009, 694, 1988–1997; Such
selective photooxygenation was also reported for azafulleroid. See: (b)
Hummelen, J. C.; Prato, M.; Wudl, F. J. Am. Chem. Soc 1995, 117, 7003–7004;
(c) Hachiya, H.; Kabe, Y. Chem. Lett. 2009, 38, 372–373.
10. (a) Ikuma, N.; Susami, Y.; Oshima, T. Org. Biomol. Chem. 2010, 8, 1394–1398; (b)
Ikuma, N.; Susami, Y.; Oshima, T. Eur. J. Org. Chem. 2011, 6452–6458.
11. Wijsman, G. W.; De Wolf, W. H.; Bickelhaupt, F.; Kooijman, H.; Spek, A. L. J. Am.
Chem. Soc. 1992, 114, 9191–9192.
18. No isomerization reaction was observed between 2a and 2b on 2 days standing
at 25 °C in CDCl3 as confirmed by the NMR measurement. Incidentally,
compound 2a was 3.4 kcal/mol more stable than 2b by DFT calculation
(Fig. S5). One reason for the inconsistency between the differential TS energy
and the isomer ratio may be the absence of entropy term (
calculation in addition to the lack of solvation parameter. One can also
conceive that the solvent toluene = 0.375 D, from CRC Handbook of
Chemistry and Physics 91st ed.) will more stabilize the polar TS-2 ( = 5.4 D)
than TS-1 ( = 3.6 D), thus reducing the differential isomer ratio of 2a/2b.
D
Sà) on the present
(
l
l
l
19. (a) Bach, R. D.; Glukhovtsev, M. N.; Gonzalez, C.; Marquez, M.; Estevez, C. M.;
Baboul, A. G.; Schlegel, H. B. J. Phys. Chem. A 1997, 101, 6092–6100; (b)
Okovytyy, S.; Gorb, L.; Leszczynski, J. Tetrahedron Lett. 2002, 43, 4215–4219.
20. Yamabe, S.; Kondou, C.; Minato, T. J. Org. Chem. 1996, 61, 616–620.
21. Angelis, Y. S.; Orfanopoulos, M. J. Org. Chem. 1997, 62, 6083–6085.
22. Although our calculational method (DFT/B3LYP) is relatively rough as
compared to the previous theoretical calculations (such as QCISD in Ref.
19a), these higher calculations cannot be straight forwardly applied to fulleroid
with too many atoms and electrons. Multi-layered method such as ONIOM will
enable such higher level calculation to fulleroid, as the following recent ONIOM
application to the Diels–Alder reaction of fullerene. See: Osuna, S.; Morera, J.;
Cases, M.; Morokuma, K.; Solà, M. J. Phys. Chem. A 2009, 113, 9721–9726.
23. Shea, K. J.; Kim, J. J. Am. Chem. Soc. 1992, 114, 3044–3051.
12. (a) Oshima, T.; Kitamura, H.; Higashi, T.; Kokubo, K.; Seike, N. J. Org. Chem.
2006, 71, 2995–3000; (b) Kitamura, H.; Kokubo, K.; Oshima, T. Org. Lett. 2007,
9, 4045–4048; (c) Kitamura, H.; Oshima, T. Org. Lett. 2008, 10, 293–296; (d)
Nakamura, Y.; Inamura, K.; Oomuro, R.; Laurenco, R.; Tidwell, T. T.; Nishimura,
J. Org. Biomol. Chem. 2005, 3, 3032–3038.
13. Reaction procedure and spectral data of the regioisomeric mixture of 2a and
2b. mCPBA (386 mg, 2.23 mmol) and 1 (82.1 mg, 0.112 mmol) were dissolved
in toluene. The solution was stirred overnight at 30 °C, and the progress of
reaction was traced by HPLC (buckyprep). The reaction mixture was
concentrated and submitted to silica gel column chromatography (toluene/
hexane) to give 15.4 mg of 2a + 2b mixture (0.017 mmol, conversion yield is