Organometallics
Communication
(8) Gauthier, S.; Weisbach, N.; Gladysz, J. A. Organometallics 2009, 28,
5597−5599.
metal are known, this methodology should allow the facile
assembly of virtually any hetereotrimetallic combination.
However, a comparatively versatile introduction of a fourth
metal onto the triazole or triazolium core must await one of two
developments. The most desirable would be the discovery of
new CH functionalization methodologies that are not as
sensitive to proton acidity. Alternatively, more electronegative
metal fragments could be employed, possibly in conjunction with
spacers that would enhance insulation from the heterocycle core.
Efforts toward these ends will be reported in due course.
(9) (a) Mathew, P.; Neels, A.; Albrecht, M. J. Am. Chem. Soc. 2008, 130,
13534−13535. (b) Karthikeyan, T.; Sankararaman, S. Tetrahedron Lett.
2009, 50, 5834−5837. (c) Poulain, A.; Canseco-Gonzalez, D.; Hynes-
Roche, R.; Muller-Bunz, H.; Schuster, O.; Stoeckli-Evans, H.; Neels, A.;
Albrecht, M. Organometallics 2011, 30, 1021−1029. (d) Nakamura, T.;
Terashima, T.; Ogata, K.; Fukuzawa, S.-i. Org. Lett. 2011, 13, 620−623.
(e) Kilpin, K. J.; Paul, U. S. D.; Lee, A.-L.; Crowley, J. D. Chem. Commun.
2011, 47, 328−330. (f) Nakamura, T.; Ogata, K.; Fukuzawa, S.-i. Chem.
Lett. 2010, 39, 920−922. (g) Cai, J.; Yang, X.; Arumugam, K.; Bielawski,
C. W.; Sessler, J. L. Organometallics 2011, 30, 5033−5037.
(h) Saravanakumar, R.; Ramkumar, V.; Sankararaman, S. Organo-
metallics 2011, 30, 1689−1694. (i) Prades, A.; Peris, E.; Albrecht, M.
Organometallics 2011, 30, 1162−1167. (j) Bernet, L.; Lalrempuia, R.;
Ghattas, W.; Mueller-Bunz, H.; Vigara, L.; Llobet, A.; Albrecht, M.
Chem. Commun. 2011, 47, 8058−8060. (k) Hohloch, S.; Su, C.-Y.;
Sarkar, B. Eur. J. Inorg. Chem. 2011, 3067−3075. (l) Schulze, B.;
ASSOCIATED CONTENT
* Supporting Information
■
S
Text, figures, and tables giving experimental procedures and
crystallographic data. This material is available free of charge via
Escudero, D.; Friebe, C.; Siebert, R.; Gorls, H.; Kohn, U.; Altuntas, E.;
̈
̈
Baumgaertel, A.; Hager, M. D.; Winter, A.; Dietzek, B.; Popp, J.;
Gonzalez, L.; Schubert, U. S. Chem. Eur. J. 2011, 17, 5494−5498.
(m) Yuan, D.; Huynh, H. V. Organometallics 2012, 31, 405−412.
(n) Keske, E. C.; Zenkina, O. V.; Wang, R.; Crudden, C. M.
Organometallics 2012, 31, 456−461. (o) Terashima, T.; Inomata, S.;
Ogata, K.; Fukuzawa, S.-i. Eur. J. Inorg. Chem. 2012, 1387−1393.
(10) Guisado-Barrios, G.; Bouffard, J.; Donnadieu, B.; Bertrand, G.
Angew. Chem., Int. Ed. 2010, 49, 4759−4762; Angew. Chem. 2010, 122,
4869−4872.
AUTHOR INFORMATION
Corresponding Author
Notes
■
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank the U.S. National Science Foundation (CHE-0719267
and CHE-1153085) for support.
(11) Mohr, W.; Stahl, J.; Hampel, F.; Gladysz, J. A. Chem. Eur. J. 2003,
9, 3324−3340.
(12) Chong, D.; Laws, D. R.; Nafady, A.; Costa, P. J.; Rheingold, A. L.;
Calhorda, M. J.; Geiger, W. E. J. Am. Chem. Soc. 2008, 130, 2692−2703.
(13) Schmidt, S. P.; Nitschke, J.; Trogler, W. C.; Huckett, S. I.;
Angelici, R. J. Inorg. Synth. 1989, 26, 113−117.
(14) Kaplan, G.; Drake, G.; Tollison, K.; Hall, L.; Hawkins, T. J.
Heterocycl. Chem. 2005, 42, 19−27. In contrast to the case for
7+TfO−·CH2Cl2, the N2N3 bond lengths are not significantly
affected.
REFERENCES
■
(1) (a) Packheiser, R.; Lang, H. Eur. J. Inorg. Chem. 2007, 3786−3788.
(b) Packheiser, R.; Ecorchard, P.; Ruffer, T.; Lang, H. Chem. Eur. J. 2008,
̈
14, 4948−4960.
(2) Lang, H.; Packheiser, R. Collect. Czech. Chem. Commun. 2007, 72,
435−452.
(3) (a) Tornøe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002,
67, 3057−3064. (b) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.;
Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2596−2599; Angew.
Chem. 2002, 114, 2708−2711. (c) Hein, J. E.; Fokin, V. V. Chem. Soc.
Rev. 2010, 39, 1302−1315. (d) Meldal, M.; Tornøe, C. W. Chem. Rev.
2008, 108, 2952−3015.
(15) These conditions were adapted from: Magriz, A.; Gom
́
ez-Bujedo,
́
S.; Alvarez, E.; Fernan
́
dez, R.; Lassaletta, J. M. Organometallics 2010, 29,
5941−5945.
́
(4) Nonferrocenyl systems: (a) Decreau, R. A.; Collman, J. P.; Yang,
Y.; Yan, Y.; Devaraj, N. K. J. Org. Chem. 2007, 72, 2794−2802.
(b) McDonald, A. R.; Dijkstra, H. P.; Suijkerbuijk, B. M. J. M.; van Klink,
G. P. M.; van Koten, G. Organometallics 2009, 28, 4689−4699.
(c) Partyka, D. V.; Gao, L.; Teets, T. S.; Updegraff, J. B., III; Deligonul,
N.; Gray, T. G. Organometallics 2009, 28, 6171−6182. (d) Zhou, Y. H.;
Lecourt, T.; Micouin, L. Angew. Chem., Int. Ed. 2010, 49, 2607−2610;
Angew. Chem. 2010, 122, 2661−2664. (e) Hanni, K. D.; Leigh, D. A.
̈
Chem. Soc. Rev. 2010, 39, 1240−1251 (see Schemes 5, 6, 13, and 19 and
associated references therein). (f) Forrest, W. P.; Cao, Z.; Chen, W. Z.;
Hassell, K. M.; Kharlamova, A.; Jakstonyte, G.; Ren, T. Inorg. Chem.
2011, 50, 9345−9353 and earlier work from this group therein.
(g) Joosten, A.; Trolez, Y.; Collin, J. P.; Heitz, V.; Sauvage, J. P. J. Am.
Chem. Soc. 2012, 134, 1802−1809. (h) Nakazawa, J.; Smith, B. J.; Stack,
T. D. P. J. Am. Chem. Soc. 2012, 134, 2750−2759.
(5) Review of ferrocenyl-containing systems: Ganesh, V.; Sudhir, V. S.;
Kundu, T.; Chandrasekaran, S. Chem. Asian J. 2011, 6, 2670−2694.
(6) (a) Partyka, D. V.; Updegraff, J. B., III; Zeller, M.; Hunter, A. D.;
Gray, T. G. Organometallics 2007, 26, 183−186. (b) Liu., F.-C.; Lin, Y.-
L.; Yang, P.-S.; Lee, G.-H.; Peng, S.-M. Organometallics 2010, 29, 4282−
4290. (c) Robilotto, T. J.; Alt, D. S.; von Recum, H. A.; Gray, T. G.
Dalton Trans. 2011, 40, 8083−8085. (d) Gao, L.; Niedzwiecki, D. S.;
Deligonul, N.; Zeller, M.; Hunter, A. D.; Gray, T. G. Chem. Eur. J. 2012,
18, 6316−6327.
(7) Del Castillo, T. J.; Sarkar, S.; Abboud, K. A.; Veige, A. S. Dalton
Trans. 2011, 40, 8140−8144.
5234
dx.doi.org/10.1021/om300542a | Organometallics 2012, 31, 5231−5234