E. J. Eklund et al. / Tetrahedron Letters 53 (2012) 4644–4647
4647
13. (a) Matsunaga, H.; Sakamaki, T.; Nagaoka, H.; Yamada, Y. Tetrahedron Lett.
1983, 24, 3009–3012; (b) Dondoni, A.; Boscarato, A.; Marra, A. Synlett 1993,
256–257; (c) Reetz, M. T.; Röhrig, D.; Harms, K.; Frenking, G. Tetrahedron Lett.
1994, 35, 8765–8768; (d) Patil, N. T.; Tilekar, J. N.; Dhavale, D. D. J. Org. Chem.
2001, 66, 1065–1074.
14. (a) Asao, N.; Shimada, T.; Sudo, T.; Tsukada, N.; Yazawa, K.; Gyoung, Y. S.;
Uyehara, T.; Yamamoto, Y. J. Org. Chem. 1997, 62, 6274–6282; (b) Yamamoto,
Y.; Asao, N. Tsukada, N. In Advances in Asymmetric Synthesis; Hassner, A., Ed.; JAI
Press: London, 1993; pp 1–37.
(Z)-12b in ethanol. The selectivity observed for this reaction likely
reflects the conformational bias enforced through allylic strain. We
believe that the chemistry revealed in this synthetic exercise
makes a contribution to the rich field of heteroconjugate addition
and will hopefully enable the synthesis of related aminopyrrolizi-
dine alkaloids and b-amino acid derivatives.
15. The sense of induction is explained from a modified vinylogous polar-Felkin–
Ahn model. For explanation and general review on the topic, see: Mengel, A.;
Reiser, O. Chem. Rev. 1999, 99, 1191–1223.
Acknowledgments
This work was supported in part by the Jeffress Memorial Trust.
E.J.E. gratefully acknowledges ALSAM Research Fellowship.
16. For reviews on the addition of homochiral amides, see: (a) Davies, S. G.; Smith,
A. D.; Price, P. D. Tetrahedron: Asymmetry 2005, 16, 2833–2891; (b) Krishna, P.
R.; Sreeshailam, A.; Srinivas, R. Tetrahedron: Asymmetry 2009, 65, 9657–9672.
17. Previous preparations of 12a or 12b using a Wittig or HWE reaction, though
several other methods have been used to prepare vinylogous proline
derivatives. None of the following reports utilize Masamune–Roush reaction
conditions: (a) Poon, C. Y.; Chiu, P. Tetrahedron Lett. 2004, 45, 2985–2988; (b)
Coz, S. L.; Mann, A.; Thareau, F.; Taddei, M. Heterocycles 1993, 36, 2073–2080;
(c) Barrett, A. G. M.; Cook, A. S.; Kamimura, A. Chem. Commun. 1998, 2533–
2534; (d) Arisawa, M.; Takezawa, E.; Nishida, A.; Mori, M.; Nakagawa, M.
Synlett 1997, 1179–1180; (e) Chappie, T. A.; Weekly, R. M.; McMills, M. C.
Tetrahedron Lett. 1996, 37, 6523–6526; Priebke, H.; Brueckner, R.; Harms, K.
Chem. Ber. 1990, 123, 555–564; (f) Yang, H.; Jurkauskas, V.; Mackintosh, N.;
Mogren, T.; Stephenson, C. R. J.; Foster, K.; Brown, W.; Roberts, E. Can. J. Chem.
2000, 78, 800–808; (g) Shankaran, K.; Donnelly, K. L.; Shah, S. K.; Guthikonda,
R. N.; MacCoss, M.; Humes, J. L.; Pacholok, S. G.; Grant, S. K.; Kelly, T. M.; Wong,
K. K. Bioorg. Med. Chem. Lett. 2004, 14, 4539–4544; (h) Niphakis, M. J.; Turunen,
B. J.; Georg, G. I. J. Org. Chem. 2010, 75, 6793–6805.
Supplementary data
Supplementary data associated with this article can be found, in
028. These data include MOL files and InChiKeys of the most
important compounds described in this article.
References and notes
1. (a) Liddell, J. R. Nat. Prod. Rep. 2002, 19, 773–781; (b) Fu, P. P.; Xia, Q.; Lin, G.;
Chou, M. W. Drug Metab. Rev. 2004, 36, 1–55; (c) Robins, D. J. J. Nat. Prod. Rep.
1993, 10, 487–497.
2. (a) Mattocks, A. R. Chemistry and Toxicology of Pyrrolizidine Alkaloids; Academic:
London, 1986; (b) White, L.; Rubiolo, P.; Bicchi, C.; Hartmann, T. Phytochemistry
1993, 32, 187–196.
3. (a) Wardrop, D. J.; Waidyarachchi, S. L. Nat. Prod. Rep. 2010, 27, 1431–1468; (b)
Asano, N.; Nash, R. J.; Molyneux, R. J.; Fleet, G. W. J. Tetrahedron: Asymmetry
2000, 11, 1645–1680; (c) Denmark, S. E.; Hurd, A. R. J. Org. Chem. 2000, 65,
2875–2886.
4. (a) Vlietinck, A. J.; De Bruyne, T.; Apers, S.; Pieters, L. A. Planta Med. 1998, 64,
97–109; (b) Taylor, D. L.; Nash, R. J.; Fellows, L. E.; Kang, M. S.; Tyms, A. S.
Antiviral Chem. Chemother. 1992, 3, 273–277; (c) Kato, A.; Adachi, I.; Miyauchi,
M.; Ikeda, K.; Komae, T.; Kizu, H.; Kameda, Y.; Watson, A. A.; Nash, R. J.;
Wormald, M. R.; Fleet, G. W. J.; Asano, N. Carbohydr. Res. 1999, 316, 95–103; (d)
Asano, N.; Kuroi, H.; Ikeda, K.; Kizu, H.; Kameda, Y.; Kato, A.; Adachi, I.; Waston,
A. A.; Nash, R. J.; Fleet, G. W. J. Tetrahedron: Asymmetry 2000, 11, 1–8.
18. Grohs, D. C.; Maison, W. Tetrahedron Lett. 2005, 46, 4373–4376.
19. N-Boc-L-proline methyl ester is commercially available or can be easily
prepared from the amino acid by esterification (SOCl2, MeOH) followed by
N-protection (Boc2O, NEt3, DMAP). See, for example: Kelleher, F.; Kelly, S.;
McKee, V. Tetrahedron: Asymmetry 2007, 63, 9235–9242.
20. (a) Sato, T.; Tsujimoto, K.; Matsubayashi, K.; Ishibashi, H.; Ikeda, M. Chem.
Pharm. Bull. 1992, 40, 2308–2312; (b) Fulep, G. H.; Hoesl, C. E.; Hofner, G.;
Wanner, K. T. Eur. J. Med. Chem. 2006, 41, 809–824.
21. Blanchette, M. A.; Choy, W.; Davis, J. T.; Essenfeld, A. P.; Masamune, S.; Roush,
W. R.; Sakai, T. Tetrahedron Lett. 1984, 25, 2183–2186.
22. (a) Ando, K. J. Org. Chem. 1997, 62, 1934–1939; (b) Ando, K. J. Org. Chem. 1999,
64, 8406–8408.
23. (a) Still, W. C.; Gennari, C. Tetrahedron Lett. 1983, 24, 4405–4408; (b)
Hammond, G. B.; Cox, M. B.; Wiemer, D. F. J. Org. Chem. 1990, 55, 128–132.
24. Ando, K.; Oishi, T.; Hirama, M.; Ohno, H.; Ibuka, T. J. Org. Chem. 2000, 65, 4745–
4749.
´
5. Ikhiri, K.; Ahond, A.; Poupat, C.; Potier, P.; Pusset, J.; Sevenet, T. J. Nat. Prod.
1987, 50, 626–630.
25. Moriwake, T.; Hamano, S.; Saito, S. Heterocycles 1988, 27, 1135–1139.
26. Related E- and Z-vinylogous proline derivatives display modest facial selection
during dihydroxylation: E- gives a 2:1 product ratio; Z-, 4:1. See: Izquierdo, I.;
Plaza, M. T.; Tamayo, J. A. Tetrahedron: Asymmetry 2004, 15, 3635–3642.
27. Some reports indicate that the E alkene geometry is indispensible for conjugate
addition of metal amide salts: Uyehara, T.; Shida, N.; Yamamoto, Y. J. Org. Chem.
1992, 57, 3139–3145. Other reports contradict this trend; see Ref. 13d.
28. Blakemore, P. R.; Kim, S. K.; Schulze, V. K.; White, J. D.; Yokochi, A. F. T. J. Chem.
Soc., Perkin Trans. 1 2001, 1831–1845.
6. Neuner-Jehle, N.; Nesvadba, H.; Spiteller, G. Monatsh. Chem. 1965, 96, 321–338.
7. Schardl, C. L.; Grossman, R. B.; Nagabhyru, P.; Faulkner, J. R.; Mallik, U. P.
Phytochemistry 2007, 68, 980–996.
8. Suri, K. A.; Suri, O. P.; Atal, C. K. J. Indian Chem. 1983, 22B, 822–823.
9. (a) Flynn, D. L.; Zabrowski, D. L.; Becker, D. P.; Nosal, R.; Villamil, C. I.; Gullikson,
G. W.; Moummi, C.; Yang, D.-C. J. Med. Chem. 1992, 35, 1486–1489; (b) Langlois,
M.; Fischmeister, R. J. Med. Chem. 2003, 46, 319–344.
10. Hovey, M. T.; Eklund, E. J.; Pike, R. D.; Mainkar, A. A.; Scheerer, J. R. Org. Lett.
2011, 13, 1246–1249.
29. The observed optical rotation for our synthetic absouline (4): ½a D25
= ꢀ48 (c 0.8,
ꢂ
11. (a) Poupat, C.; Christine, C. M.; Ikhiri, K.; Ahond, A.; Mourabit, A. A.; Potier, P.
Tetrahedron: Asymmetry 2000, 56, 1837–1850; (b) Matos, M. N.; Afonso, C. A.
M.; Batey, R. A. Tetrahedron: Asymmetry 2005, 61, 1221–1244.
12. (a) Vargas-Sanchez, M.; Couty, F.; Evano, G.; Prim, D.; Marrot, J. Org. Lett. 2005,
7, 5861–5864; (b) Tang, T.; Ruan, Y.-P.; Ye, J.-L.; Huang, P.-Q. Synlett 2005, 213–
234; (c) Giri, N.; Petrini, M.; Profeta, R. J. Org. Chem. 2004, 69, 7303–7308.
EtOH); ꢀ28 (c 1.17, CHCl3). This compares favorably with published data:
natural (+)-4 (Ref. 5) ½a D20
ꢂ
= +56 (c 1.0, EtOH); synthetic (Ref. 12a) (ꢀ)-4 ½a D20
ꢂ
= –
51 (c 0.4, EtOH); –37 (c 1.8, CHCl3); synthetic (Ref. 11a) (+)-4 ½a D20
ꢂ
= +26 (c 1.05,
CHCl3).