Scheme 1. Synthesis of Trifluoroborates, Boronate Esters, and
One-Pot Cross-Coupled Products from the Same Boronic Acid
Intermediate
Scheme 2. Synthesis of B2Pin2 and BBA from Shared Precursor
(Me2N)2BB(NMe2)2
and instead performa one-pot, two-step borylation/Suzuki
reaction, providing cross-coupled products from two aryl
halides (Scheme 1). This method represents a break-
through on the existing Miyaura borylation using B2Pin2.
Through the use of BBA, pinacol is eliminated from the
entireprocess, thusmaking access to the boronic acidmuch
easier and more efficient.
The use of BBA had appeared only infrequently in the
chemical literature at the start of our research, in part because
it was not commercially available, and thus, its synthesis was
required.16À18 The synthetic sequence for the production of
BBA is shared with that of B2Pin2 up to the precursor
tetrakis(dimethylamino)diborane [(Me2N)2BB(NMe2)2].19
However, instead of adding pinacol in the last step, (Me2N)2-
BB(NMe2)2 is hydrolyzed with aqueous acid at low tempera-
tures. The product BBA, a white solid, precipitates out of
solution and can be filtered off and dried (Scheme 2).20,21
(Me2N)2BB(NMe2)2 has appeared in the chemical lit-
erature as a precursor to other boronate esters,22À29 but
not as a high-yielding, general borylating agent.30,31 In this
paper, we report the first broadly successful borylation
of aryl- and heteroaryl halides and pseudohalides using
(Me2N)2BB(NMe2)2. Through the use of this method, the
necessity to convert (Me2N)2BB(NMe2)2 into BBA or
B2Pin2 is avoided, reducing both time and chemical waste.
These savings are especially noteworthy when one con-
siders the inefficiency of B2Pin2 in general. Pinacol makes
up >90% of the mass of B2Pin2. Once synthesized, many
pinacol boronates are converted to the corresponding
boronic acids or trifluoroborates with often harsh, ineffi-
cient, or tedious methods, while needlessly disposing of
pinacol.23,32À41 As with our first borylation method
with BBA, (Me2N)2BB(NMe2)2 virtually eliminates this
demasking step, providing more efficient and greener
access to desired compounds.
(10) Moldoveanu, C.; Wilson, D.; Wilson, C.; Leowananwat, P.;
Resmerita, A.; Lui, C.; Rosen, B.; Percec, V. J. Org. Chem. 2010, 75,
5438–5452.
(11) Rosen, B.; Huang, C.; Percec, V. Org. Lett. 2008, 10, 2597–2600.
(12) Tang, W.; Keshipeddy, S.; Zhang, Y.; Wei, X.; Savoie, J.; Patel,
N. D.; Yee, N. K.; Senanayake, C. H. Org. Lett. 2011, 13, 1366–1369.
(13) Wilson, D.;Wilson, C.;Moldoveanu, C.;Resmerita, A.;Corcoran,
P.; Hoang, L.; Rosen, B.; Percec, V. J. Am. Chem. Soc. 2010, 132,
1800–1801.
The new method utilizing (Me2N)2BB(NMe2)2 is per-
formed with only slight modifications to our recently
optimized method usingBBA and Buchwald’ssecond-gen-
eration palladium precatalyst (XPhos-Pd-G2, L = XPhos,
(27) Moezzi, A.; Olmstead, M.; Power, P. Organometallics 1992, 11,
2383–2388.
(14) Molander, G. A.; Trice, S. L. J.; Dreher, S. D. J. Am. Chem. Soc.
2010, 132, 17701–17703.
(28) Moezzi, A.; Olmstead, M.; Power, P. J. Chem. Soc., Dalton
Trans. 1992, 2429–2434.
(29) Lawlor, F.; Norman, N.; Pickett, N.; Robins, E. G.; Nguyen, P.;
Lesley, G.; Marder, T.; Ashmore, J.; Green, J. Inorg. Chem. 1998, 37,
5282–5288.
(15) Molander, G. A.; Trice, S. L. J.; Kennedy, S. M.; Dreher, S. D.;
Tudge, M. T. J. Am. Chem. Soc. 2012, 134, 11667–11673.
(16) (a) Pilarski, L. T.; Szabo, K. Angew. Chem., Int. Ed. 2011, 50,
8230–8232. (b) Sebelius, S.; Olsson, V.; Szabo, K. J. Am. Chem. Soc.
2005, 127, 10478–10479.
(30) Ishiyama, T.; Matsuda, N.; Murata, M.; Ozawa, F.; Suzuki, A.;
Miyaura, N. Organometallics 1996, 15, 713–720.
(31) Ishiyama, T.; Itoh, Y.; Kitano, T.; Miyaura, N. Tetrahedron
Lett. 1997, 38, 3447–3450.
(32) Nakamura, H.; Fujiwara, M.; Yamamoto, Y. J. Org. Chem.
1998, 63, 7529–7530.
(17) Selander, N.; Kipke, A.; Sebelius, S.; Szabo, K. J. Am. Chem.
Soc. 2007, 129, 13723–12731.
(18) Selander, N.; Szabo, K. Chem. Commun. 2008, 3420–3422.
(19) Ishiyama, T.; Murata, M.; Ahiko, T.; Miyaura, N. Org. Synth.
2004, 10, 115–119.
(20) McCloskey, A. L.; Brotherton, R. J.; Boone, J. L. J. Am. Chem.
Soc. 1961, 83, 4750–4754.
(21) BBA is now commercially available. CAS 13675-18-8.
(22) Clegg, W.; Lawlor, F.; Lesley, G.; Marder, T.; Norman, N.;
Orpen, G.; Quayle, M.; Rice, C.; Scott, A.; Souza, F. J. Organomet.
Chem. 1997, 550, 183–192.
(33) Falck, J. R.; Bondlela, M.; Venkataraman, S. K. J. Org. Chem.
2001, 66, 7148–7150.
(34) Deng, H.; Jung, J. K.; Liu, T.; Kuntz, K. W.; Snapper, M. L.;
Hoveyda, A. H. J. Am. Chem. Soc. 2003, 125, 9032–9034.
(35) Song, Y. L.; Morin, C. Synlett 2001, 266–268.
(36) Jung, M. E.; Lazarova, T. I. J. Org. Chem. 1999, 64, 2976–2977.
(37) Ma, D.; Wu, Q. Tetrahedron Lett. 2001, 42, 5279–5281.
(38) Yang, W.; He, H.; Drueckhammer, D. G. Angew. Chem., Int. Ed.
2001, 40, 1714–1718.
(23) Zaidlewicz, M.; Wolan, A. J. Organomet. Chem. 2002, 657, 129–
135.
(24) Nguyen, P.; Lesley, G.; Taylor, N.; T., M. Inorg. Chem. 1994, 33,
4623–4624.
(39) Pennington, T.; Kardiman, C.; Hutton, C. Tetrahedron Lett.
2004, 45, 6657–6660.
(40) Yuen, A.; Hutton, C. Tetrahedron Lett. 2005, 46, 7899–7903.
(41) Bagutski, V.; Ros, A.; Aggarwal, V. K. Tetrahedron 2009, 65,
9956–9960.
(25) Boller, T. M.; Murphy, J. M.; Hapke, M.; Ishiyama, T.;
Miyuaura, N.; Hartwig, J. F. J. Am. Chem. Soc. 2005, 127, 14263–14278.
(26) Clegg, W.; Johann, T.; Marder, T.; Norman, N.; Orpen, G.;
Peakman, T.; Quayle, M.; Rice, C.; Scott, A. J. Chem. Soc., Dalton
Trans. 1998, 1431–1438.
Org. Lett., Vol. 14, No. 18, 2012
4815