1660
S. Sanjaya et al.
LETTER
J.-Y.; Chiba, S. Angew. Chem. Int. Ed. 2011, 50, 5927.
Acknowledgment
(b) Van Humbeck, J. F.; Simonovich, S. P.; Knowles, R. R.;
MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132, 10012.
(c) Michel, C.; Belanzoni, P.; Gamez, P.; Reedjik, J.;
Baerends, E. J. Inorg. Chem. 2009, 48, 11909. (d) It could
also be proposed that the resulting Cu(III)–TEMPO complex
induces electrophilic cyclization of the imino sp2 nitrogen
with the intramolecular alkene.
This work was supported by funding from Nanyang Technological
University, Singapore Ministry of Education (Academic Research
Fund Tier 2: MOE2010-T2-1-009).
Supporting Information for this article is available online at
m
iotSrat
ungIifoop
r
t
(14) There have been reported some biologically active natural
alkaloids such as broussonetine and nectrisine bearing
oxymethyl dihydropyrrole or pyrrolidine structures, see:
(a) Merino, P.; Delso, I.; Tejero, T.; Cardona, F.; Marradi,
M.; Faggi, E.; Parmeggiani, C.; Goti, A. Eur. J. Org Chem.
2008, 2929. (b) Hulme, A. N.; Montgomery, C. H.
Tetrahedron Lett. 2003, 44, 7649.
(15) We have tried oxidative and reductive cleavage of the O–N
bond of 3aa (using MCPBA and Zn/MeOH–aq NH4Cl
conditions, respectively), while only decomposed complex
mixtures were obtained.
References and Notes
(1) For recent reviews, see: (a) Thomas, G. L.; Johannes, C. W.
Curr. Opin. Chem. Biol. 2011, 15, 516. (b) Tohme, R.;
Darwiche, N.; Gali-Muhtasib, H. Molecules 2011, 16, 9665.
(c) Dandapani, S.; Marcaurelle, L. A. Curr. Opin. Chem.
Biol. 2010, 14, 362. (d) Welsch, M. E.; Snyder, S. A.;
Stockwell, B. R. Curr. Opin. Chem. Biol. 2010, 14, 347.
(e) Carey, J. S.; Laffan, D.; Thomson, C.; Williams, M. T.
Org. Biomol. Chem. 2006, 4, 2337.
(2) For selected reviews, see: (a) Joule, J. A.; Mills, K.
Heterocyclic Chemistry, 5th ed.; Wiley-Blackwell:
Chichester, 2010. (b) Progress in Heterocyclic Chemistry;
Vol. 20; Gribble, G. W.; Joule, J. A., Eds.; Elsevier: Oxford,
2008, and others in this series. (c) Comprehensive
Heterocyclic Chemistry III; Katritzky, A. R.; Ramsden,
C. A.; Scriven, E. F. V.; Taylor, R. J. K., Eds.; Pergamon:
Oxford, 2008. (d) Comprehensive Heterocyclic Chemistry
II; Katritzky, A. R.; Rees, C. A.; Scriven, E. F. V.; Taylor,
R. J. K., Eds.; Pergamon: Oxford, 1996. (e) Eicher, T.;
Hauptmann, S. The Chemistry of Heterocycles; Wiley-VCH:
Weinheim, 2003.
(3) Zhang, L.; Ang, G. Y.; Chiba, S. Org. Lett. 2010, 12, 3682.
(4) Sanjaya, S.; Chiba, S. Tetrahedron 2011, 67, 590.
(5) Zhang, L.; Ang, G. Y.; Chiba, S. Org. Lett. 2011, 13, 1622.
(6) (a) Paderes, M. C.; Belding, L.; Fanovic, B.; Dudding, T.;
Keister, J. B.; Chemler, S. R. Chem. Eur. J. 2012, 18, 1711.
(b) Paderes, M. C.; Chemler, S. R. Eur. J. Org. Chem. 2011,
3679. (c) Chemler, S. R. J. Organomet. Chem. 2011, 696,
150. (d) Sherman, E. S.; Chemler, S. R. Adv. Synth. Catal.
2009, 351, 467. (e) Paderes, M. C.; Chemler, S. R. Org. Lett.
2009, 11, 1915. (f) Fuller, P. H.; Kim, J.-W.; Chemler, S. R.
J. Am. Chem. Soc. 2008, 130, 17638.
(16) General Procedure for the Synthesis of 2,2,6,6-
Tetramethyl-1-[(2,4,4-trimethyl-5-p-tolyl-3,4-dihydro-
2H-pyrrol-2-yl)methoxy]piperidine (3aa)
To a 10 mL Schlenk tube with a Teflon valve was added
carbonitrile 1a (48.2 mg, 0.39 mmol) in Et2O (0.4 mL) and
p-tolylmagnesium bromide (2a, 0.53 mL, 0.47 mmol, 0.88
M in Et2O) was added slowly. The reaction was then heated
at 60 °C under sealed conditions for 4 h. The mixture was
quenched with distilled MeOH (60 μL) at 0 °C, and DMF (4
mL), Cu(OAc)2 (72.2 mg, 0.40 mmol), and TEMPO (91.7
mg, 0.59 mmol) were added immediately. The mixture was
further stirred at r.t. for 2 h under an inert atmosphere. The
reaction was quenched with ammonium buffer solution (pH
9) and extracted three times with Et2O. The organic phase
was then washed with H2O and brine and dried over MgSO4.
The solvent was evaporated to give a crude mixture, which
was purified by flash column chromatography (hexane–
EtOAc = 95:5) to provide 3aa (98.7 mg, 0.27 mmol) in 68%
yield.
Analytical Data
Colorless oil. IR (NaCl): 2968, 2932, 2870, 1609, 1468,
1360, 1312, 1244, 1132, 1070, 1053, 752, 731 cm–1. 1H
NMR (400 MHz, CDCl3): δ = 1.07 (3 H, s), 1.13 (3 H, s),
1.20 (3 H, s), 1.24 (3 H, s), 1.32 (3 H, s), 1.36 (3 H, s), 1.44
(3 H, s), 1.27–1.51 (6 H, m), 1.68 (1 H, d, J = 12.8 Hz), 2.34
(1 H, d, J = 12.8 Hz), 2.36 (3 H, s), 3.79 (1 H, d, J = 8.4 Hz),
3.89 (1 H, d, J = 8.4 Hz), 7.16 (2 H, d, J = 8.2 Hz), 7.60 (2
H, d, J = 8.2 Hz). 13C NMR (100 MHz, CDCl3): δ = 15.3,
18.6, 18.9, 19.6, 25.0, 26.3, 28.0, 31.4, 31.5, 38.0, 47.4, 50.0,
58.3, 70.5, 81.0, 126.3, 127.0, 130.6, 137.2, 175.8. ESI-
HRMS: m/z calcd for C24H39N2O [M + H]+: 371.3062;
found: 371.3053.
(7) For the copper-mediated diamination of alkenes in similar
manner to the oxyamination, see: Sequeira, F. C.;
Turnpenny, B. W.; Chemler, S. R. Angew. Chem. Int. Ed.
2010, 49, 6365.
(8) Pickard, P. L.; Tolbert, T. L. J. Org. Chem. 1961, 26, 4886.
(9) The copper-catalyzed/-mediated aminooxygenation with
sulfonamide and TEMPO generally needed high
temperature (110–130 °C), see ref. 6.
(10) Zhang and Zhu reported copper-catalyzed aerobic reactions
of N-allyl amidines that afforded formylimidazoles via
aminooxygenation of the alkene, see: Wang, H.; Wang, Y.;
Liang, D.; Liu, L.; Zhang, J.; Zhu, Q. Angew. Chem. Int. Ed.
2011, 50, 5678.
(11) (a) Rauws, T. R. M.; Maes, B. U. W. Chem. Soc. Rev. 2012,
41, 2463. (b) Caron, S.; Wei, L.; Douville, J.; Ghosh, A.
J. Org. Chem. 2010, 75, 945; and references cited therein.
(12) The reactions might be initiated by aminocupration of
putative copper iminyl species onto alkene followed by
conversion of the resulting organocopper species into the C–
O bond with TEMPO. For a review on synthetic applications
of TEMPO, see: Vogler, T.; Studer, A. Synthesis 2008, 1979.
(13) Recent literature precedents have shown that Cu(II) species
and TEMPO make a Cu(III)–TEMPO complex that works as
an ionic electrophile, see: (a) Wang, Y.-F.; Toh, K. K.; Lee,
(17) General Procedure for the Synthesis of 1-[(1,2-Diphenyl-
4,5-dihydro-1H-imidazol-4-yl)methoxy]-2,2,6,6-
tetramethylpiperidine (5a)
To a 25 mL Schlenk tube was added amidine 4a (136.7 mg,
0.58 mmol), Cu(OAc)2 (113.0 mg, 0.62 mmol), and TEMPO
(135.5 mg, 0.87 mmol) in DMF (6.0 mL). The reaction was
then heated at 80 °C for 24 h. The reaction was quenched
with ammonium buffer solution (pH 9) at r.t. It was then
extracted three times with EtOAc. The organic phase was
then washed with H2O and brine and dried over MgSO4. The
solvent was removed in vacuo, affording crude residue,
which was purified by flash column chromatography
(hexane–EtOAc = 80:20, gradually 20% EtOAc increment
every time after 50 mL eluent, until 100% EtOAc was
reached) to provide 5a (126.8 mg, 0.33 mmol) in 56% yield
(94% purity).
Synlett 2012, 23, 1657–1661
© Georg Thieme Verlag Stuttgart · New York