Journal of the American Chemical Society
Communication
(d) Cangelosi, V. M.; Carter, T. G.; Zakharov, L. N.; Johnson, D. W.
Chem. Commun. 2009, 5606.
(3) (a) Kinbara, K.; Aida, T. Chem. Rev. 2005, 105, 1377. (b) Gan,
at all with the (2)2 duplex having the mismatching stereo-
chemistry, suggesting that the interaction between (2)2 and 3 is
also strongly diastereoselective. Since the equilibrium between
[(P)-2]2 and [(M)-2]2 is slow on the NMR time scale, 3 acts as
a sort of chiral shift reagent that resolves them into distinct
signals before their interconversion occurs.
Interestingly, the induced CD spectrum of 2 resulting from a
handedness bias by 3 was found to be ∼5 times more intense in
(2)2⊃(3)2 than in 2⊃3 (Figure 2B,C) despite the fact that
handedness induction is (close to) quantitative in both cases.
The Δε values appear to be higher for double-helical (2)2 than
for single-helical 2, whose helix pitch is half as small.
In summary, guest 3 enhances the thermodynamic stability of
the double-helical duplex (2)2 but simultaneously reduces the
kinetics of (2)2 production upon forming a foldaxane with
monomeric 2, which can be long-lived at low temperature.
While each individual equilibrium appears to be relatively fast
when assessed in the millimolar range, the formation of 2⊃3 at
0.1 mM results in a very low concentration of single-helical 2,
which slows the formation of (2)2. Similarly, the formation of
(2)2⊃(3)2 is slower when the concentrations of both (2)2 and
free 3 are low. The sequence of steps for conversion of 2⊃3
into (2)2⊃(3)2 is shown in Figure 1: (i) dissociation into 2 and
3; (ii) inversion of the helix handedness of 2 (see ref 14 for a
possible mechanism); (iii) association of 2 into (2)2; and (iv)
binding of 3 to (2)2. The time scales involved in the equilibria
at each step allow the isolation of both the kinetic and
thermodynamic supramolecular products and monitoring of the
inversion of chiroptical properties with time as the system first
evolves toward a product with one handedness and then reverts
into another product having the opposite handedness.
Q.; Ferrand, Y.; Bao, C.; Kauffmann, B.; Grel
Science 2011, 331, 1172.
(4) (a) Ferrand, Y.; Kendhale, A. M.; Kauffmann, B.; Grel
Marie, C.; Blot, V.; Pipelier, M.; Dubreuil, D.; Huc, I. J. Am. Chem. Soc.
2010, 132, 7858. (b) Ferrand, Y.; Nagula, C.; Kendhale, A. M.; Aube,
́
ard, A.; Jiang, H.; Huc, I.
́
ard, A.;
́
C.; Kauffmann, B.; Grelard, A.; Laguerre, M.; Dubreuil, D.; Huc, I. J.
Am. Chem. Soc. 2012, 134, 11282.
(5) Ferrand, Y.; Gan, Q.; Kauffmann, B.; Jiang, H.; Huc, I. Angew.
Chem., Int. Ed. 2011, 50, 7572.
(6) (a) Nishinaga, T.; Tanatani, A.; Oh, K.; Moore, J. S. J. Am. Chem.
Soc. 2002, 124, 5934. (b) Tanatani, A.; Hughes, T. S.; Moore, J. S.
Angew. Chem., Int. Ed. 2002, 41, 325. (c) Petitjean, A.; Cuccia, L. A.;
Schmutz, M.; Lehn, J. M. J. Org. Chem. 2008, 73, 2481.
(7) Sugiura, M.; Tokudomi, M.; Nakajima, M. Chem. Commun. 2010,
46, 7799.
(8) (a) Berl, V.; Huc, I.; Khoury, R.; Krische, M. J.; Lehn, J.-M.
Nature 2000, 407, 720. (b) Gan, Q.; Bao, C.; Kauffmann, B.; Grel
A.; Xiang, J.; Liu, S.; Huc, I.; Jiang, H. Angew. Chem., Int. Ed. 2008, 47,
1715. (c) Baptiste, B.; Zhu, J.; Haldar, D.; Kauffmann, B.; Leger, J.-M.;
Huc, I. Chem.Asian J. 2010, 5, 1364.
(9) Jiang, H.; Leger, J.-M.; Huc, I. J. Am. Chem. Soc. 2003, 125, 3448.
́
ard,
́
́
(10) (a) Berni, E.; Kauffmann, B.; Bao, C.; Lefeuvre, J.; Bassani, D.
M.; Huc, I. Chem.Eur. J. 2007, 13, 8463. (b) Berni, E.; Garric, J.;
Lamit, C.; Kauffmann, B.; Leger, J.-M.; Huc, I. Chem. Commun. 2008,
́
1968.
(11) Association constants (Ka) were obtained using the
WINEQNMR software. See: Hynes, M. J. J. Chem. Soc., Dalton
Trans. 1993, 311.
(12) (a) Hou, J.-L.; Shao, X.-B.; Chen, G.-J.; Zhou, Y.-X.; Jiang, X.-K.;
Li, Z.-T. J. Am. Chem. Soc. 2004, 126, 12386. (b) Maurizot, V.; Dolain,
C.; Huc, I. Eur. J. Org. Chem. 2005, 1293. (c) Goto, H.; Furusho, Y.;
Yashima, E. J. Am. Chem. Soc. 2007, 129, 9168. (d) Waki, M.; Abe, H.;
Inouye, M. Angew. Chem., Int. Ed. 2007, 46, 3059.
(13) For examples of handedness inversion, see: (a) Fujiki, M. J. Am.
Chem. Soc. 2000, 122, 3336. (b) Sakurai, S.-i.; Okoshi, K.; Kumaki, J.;
Yashima, E. J. Am. Chem. Soc. 2006, 128, 5650. (c) Okoshi, K.; Sakurai,
S.-i.; Ohsawa, S.; Kumaki, J.; Yashima, E. Angew. Chem., Int. Ed. 2006,
45, 8173. (d) Johnson, R. S.; Yamazaki, T.; Kovalenko, A.; Fenniri, H.
J. Am. Chem. Soc. 2007, 129, 5735. (e) Meudtner, R. M.; Hecht, S.
Angew. Chem., Int. Ed. 2008, 47, 4926. (f) Peterca, M.; Imam, M. R.;
Ahn, C.-H.; Balagurusamy, V. S. K.; Wilson, D. A.; Rosen, B. M.;
Percec, V. J. Am. Chem. Soc. 2011, 133, 2311. (g) Akine, S.; Hotate, S.;
Nabeshima, T. J. Am. Chem. Soc. 2011, 133, 13868.
ASSOCIATED CONTENT
■
S
* Supporting Information
Experimental details for synthetic procedures, spectroscopic
data, and CIFs for (2)2 and (2)2⊃(3)2. This material is available
AUTHOR INFORMATION
■
Corresponding Author
(14) Delsuc, N.; Kawanami, T.; Lefeuvre, J.; Shundo, A.; Ihara, H.;
Takafuji, M.; Huc, I. ChemPhysChem 2008, 9, 1882.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by the Conseil Reg
(predoctoral fellowship to Q.G.) and by ANR (Grant ANR-09-
́
ional d’Aquitaine
́
BLAN-0082-01). We thank Ms. Axelle Grelard for her
assistance with NMR measurements.
REFERENCES
■
(1) (a) Mathias, J. P.; Simanek, E. E.; Seto, C. T.; Whitesides, G. M.
Angew. Chem., Int. Ed. Engl. 1993, 32, 1766. (b) Paraschiv, V.; Crego-
Calama, V.; Ishi-i, T.; Padberg, C. J.; Timmerman, P.; Reinhoudt, D.
N. J. Am. Chem. Soc. 2002, 124, 7638. (c) Korevaar, P. A.; George, S.
J.; Markvoort, A. J.; Smulders, M. M. J.; Hilbers, P. A. J.; Schenning, A.
P. H. J.; De Greef, T. F. A.; Meijer, E. W. Nature 2012, 481, 492.
(2) (a) Hasenknopf, B.; Lehn, J.-M.; Boumediene, N.; Dupont-
Gervais, A.; Van Dorsselaer, A.; Kneisel, B.; Fenske, D. J. Am. Chem.
Soc. 1997, 119, 10956. (b) Hasenknopf, B.; Lehn, J.-M.; Boumediene,
N.; Leize, E.; Van Dorsselaer, A. Angew. Chem., Int. Ed. 1998, 37, 3265.
(c) Levin, M. D.; Stang, P. J. J. Am. Chem. Soc. 2000, 122, 7428.
D
dx.doi.org/10.1021/ja3064364 | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX