ACS Medicinal Chemistry Letters
Letter
H.; Al-Jumaah, S.; Al-Hajjar, S.; Al-Mohsen, I. Z.; Frayha, H. H.;
Rucker, R.; Hawn, T. R.; Aderem, A.; Tufenkeji, H.; Haraguchi, S.;
Day, N. K.; Good, R. A.; Gougerot-Pocidalo, M. A.; Ozinsky, A.;
Casanova, J. L. Pyogenic bacterial infections in humans with IRAK-4
deficiency. Science 2003, 299, 2076−2079.
(12) Dou, H.; Song, Y.; Liu, X.; Yang, L.; Jiang, N.; Chen, D.; Li, E.;
Tan, R.; Hou, Y. A novel benzenediamine derivate rescued mice from
experimental sepsis by attenuating proinflammatory mediators via
IRAK4. Am. J. Respir. Cell Mol. 2014, 51, 191−200.
(13) Tumey, L. N.; Boschelli, D. H.; Bhagirath, N.; Shim, J.; Murphy,
E. A.; Goodwin, D.; Bennett, E. M.; Wang, M. M.; Lin, L. L.; Press, B.;
Shen, M.; Frisbie, R. K.; Morgan, P.; Mohan, S.; Shin, J.; Rao, V. R.
Identification and optimization of indolo[2,3-c]quinoline inhibitors of
IRAK4. Bioorg. Med. Chem. Lett. 2014, 24, 2066−2072.
(14) For a recent review, see Chaudhary, D.; Robinson, S.; Romero,
D. L. Recent advances in the discovery of small molecule inhibitors of
interleukin-1 receptor-associated kinase 4 (IRAK4) as a therapeutic
target for inflammation and oncology disorders. J. Med. Chem. 2015,
58, 96−110.
Accession Codes
X-ray coordinates for compounds 1 and 30 in the Protein Data
Bank are 4YO6 and 4YP8, respectively.
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
The authors thank the Merck departments of preclinical
development and pharmacokinetics, pharmacodynamics, and
drug metabolism for providing solubility and rat PK analyses,
respectively.
(15) For a recent review, see Hynes, J.; Nair, S. K. Advances in the
discovery of small-molecule IRAK4 inhibitors. Annu. Rep. Med. Chem.
2014, 49, 117−133.
ABBREVIATIONS
■
IRAK4, interleukin-1 receptor-associated kinase 4; SAR,
structure−activity relationship; IL-1R/TLR, interleukin-1 re-
ceptor/Toll-like receptor; TIR, Toll/interleukin-1R; MYD88,
myeloid differentiation primary response gene 88; AP-1,
activator protein-1; NF-κB, nuclear factor κ-light-chain-
enhancer of activated B cells; TNFα, tumor necrosis factor α;
IL-1, interleukin-1; TLR2, Toll-like receptor 2; i-PrOH, iso-
propanol; DIPEA, diisopropylethylamine; N/A, not available;
HPbCD, (2-hydroxypropyl)-β-cyclodextrin; AUC, area under
curve; PK, pharmacokinetic; MINK1, misshapen-like kinase 1;
THP, tetrahydropyran; TRKB, tyrosine receptor kinase B;
PAM2CSK4, palmitoyl-2-cysteine-serine-lysine; IL-1β, interleu-
kin-1 β; IL-6, interleukin-6; IFNγ, Interferon γ; TLR4, Toll-like
receptor 4; LPS, lipopolysaccharide; IL-8, interleukin-8; ABIA,
antibody induced arthritis; MC, methylcellulose
(16) Toledo, L. M.; Lydon, N. B.; Elbaum, D. The structure-based
design of ATP-site directed protein kinase inhibitors. Curr. Med. Chem.
1999, 6, 775−805.
(17) See Supporting Information for complete description of
compound synthesis.
(18) Reddy, G. J.; Latha, D.; Rao, K. S. A clean and rapid synthesis of
5-amino and 5-alkoxycarbonylpyrazoles using montmorillonite under
acid free conditions. Org. Prep. Proced. Int. 2004, 36, 494−498.
(19) Korfmacher, W. A.; Cox, K. A.; Ng, K. J.; Veals, J.; Hsieh, Y. S.;
Wainhaus, S.; Broske, L.; Prelusky, D.; Nomeir, A.; White, R. E.
Cassette-accelerated rapid rat screen: a systematic procedure for the
dosing and liquid chromatography/atmospheric pressure ionization
tandem mass spectrometric analysis of new chemical entities as part of
new drug discovery. Rapid Commun. Mass Spectrom. 2001, 15, 335−
340.
(20) Ritchie, T. J.; Macdonald, S. J. F. The impact of aromatic ring
count on compound developability - are too many aromatic rings a
liability in drug design? Drug Discovery Today 2009, 14, 1011−1020.
(21) Palsson-McDermott, E. M.; O’Neill, L. A. J. The potential of
targeting Toll-like receptor 2 in autoimmune and inflammatory
diseases. Irish J. Med. Sci. 2007, 176, 253−260.
REFERENCES
■
(1) Pawelec, G.; Goldeck, D.; Derhovanessian, E. Inflammation,
ageing and chronic disease. Curr. Opin. Immunol. 2014, 29, 23−28.
(2) Jacobson, D. L.; Gange, S. J.; Rose, N. R.; Graham, N. M. H.
Epidemiology and estimated population burden of selected auto-
immune diseases in the United States. Clin. Immunol. Immunopathol.
1997, 84, 223−243.
(3) Trinchieri, G. Cancer and Inflammation: An old intuition with
rapidly evolving new concepts. Annu. Rev. Immunol. 2012, 30, 677−
706.
(22) He, H.; Lyons, K. A.; Shen, X.; Yao, Z.; Bleasby, K.; Chan, G.;
Hafey, M.; Salituro, G. M.; Cohen, L. H.; Tang, W. Utility of unbound
plasma drug levels and P-glycoprotein transport data in prediction of
central nervous system exposure. Xenobiotica 2009, 39, 687−693.
(23) Asquith, D. L.; Miller, A. M.; McInnes, I. B.; Liew, F. Y. Animal
models of rheumatoid arthritis. Eur. J. Immunol. 2009, 39, 2040−2044.
(4) Libby, P. Inflammation and cardiovascular disease mechanisms.
Am. J. Clin. Nutr. 2006, 83, 456s−460s.
(5) Choy, E. H.; Kavanaugh, A. F.; Jones, S. A. The problem of
choice: current biologic agents and future prospects in RA. Nat. Rev.
Rheumatol. 2013, 9, 154−163.
(6) Ghoreschi, K.; Gadina, M. Jakpot! New small molecules in
autoimmune and inflammatory diseases. Exp. Dermatol. 2014, 23, 7−
11.
(7) Wang, X. H.; Smith, C.; Yin, H. Targeting Toll-like receptors
with small molecule agents. Chem. Soc. Rev. 2013, 42, 4859−4866.
(8) Li, S. Y.; Strelow, A.; Fontana, E. J.; Wesche, H. IRAK-4: A novel
member of the IRAK family with the properties of an IRAK-kinase.
Proc. Natl. Acad. Sci. USA 2002, 99, 5567−5572.
(9) O’Neill, L. A. J. The interleukin-1 receptor/Toll-like receptor
superfamily: 10 years of progress. Immunol. Rev. 2008, 226, 10−18.
(10) Suzuki, N.; Saito, T. IRAK-4 - a shared NF-kappa B activator in
innate and acquired immunity. Trends Immunol. 2006, 27, 566−572.
(11) Picard, C.; Puel, A.; Bonnet, M.; Ku, C. L.; Bustamante, J.; Yang,
K.; Soudais, C.; Dupuis, S.; Feinberg, J.; Fieschi, C.; Elbim, C.;
Hitchcock, R.; Lammas, D.; Davies, G.; Al-Ghonaium, A.; Al-Rayes,
F
ACS Med. Chem. Lett. XXXX, XXX, XXX−XXX