M. Saçmacı et al. / Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 97 (2012) 88–99
99
[7] D.R. Waring, G. Hallas, The Chemistry and Applications of Dyes, Plenum, New
York, 1990.
[8] S. Vicente, N. Manisso, Z.F. Queiroz, E.A.G. Zagatto, Talanta 57 (2002) 475–480.
[9] A.M. Khedr, M. Gaber, R.M. Issa, H. Erten, Dyes Pigm. 67 (2005) 117–128.
[10] E. Torres, I. Bustos-Jaimes, S. Le Borgne, Appl. Catal. B: Environ. 46 (2003) 1–15.
[11] P. Gregory, Dyes Pigm. 7 (1986) 45–56.
[12] K.S. Cheon, Y.S. Park, P.M. Kazmaier, E. Buncel, Dyes Pigm. 53 (2002) 3–14.
[13] R.L. Reeves, R.S. Kaiser, J. Org. Chem. 35 (1970) 3670–3675.
[14] H. Park, W. Choi, J. Photochem. Photobiol. A Chem. 159 (2003) 241–247.
[15] L. Antonov, S. Kawauchi, M. Satoh, J. Komiyama, Dyes Pigm. 40 (1999) 163–
170.
and it was found to be 1.95 eV (Fig. 11). The indirect optical energy
band gap of HQD was also determined with a value of 1.90 eV by
extrapolating the linear portion of this plot in Fig. 11 for m = 2. This
azo dye has a direct energy band gap of 1.95 eV and the indirect
transition involves a defect energy band; these results can be attrib-
uted to the molecular structure of HQD.
The absorption maxima (kmax) of HQD were also calculated by
the methods of CIS, TD and ZINDO using ethanol as the solvent.
The experimental and theoretical visible absorption maxima of
HQD were given in Table 8. The closest value to the experimental
kmax observed at 527 nm was obtained with ZINDO method as
553 nm when compared with the other methods. The other peaks
at 309 and 229 nm measured experimentally are in a better agree-
ment with the calculated values of CIS.
[16] P. Ball, C.H. Nicholls, Dyes Pigm. 3 (1982) 5–26.
[17] J.O. Morley, J. Phys. Chem. 98 (1994) 13177–13181.
[18] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,
G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato,
X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M.
Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y.
Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro,
M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R.
Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J.
Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken,
C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R.
Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski,
G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B.
Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision B.01,
Gaussian, Inc., Wallingford, CT, 2010.
[19] M.H. Jamrez, Vibrational Energy Distribution Analysis VEDA4, Warsaw, 2004.
[20] W.D. Allen, A.G. Csaszar, D.A. Horner, J. Am. Chem. Soc. 114 (1992) 6834–6849.
[21] J. Harada, K. Ogawa, S. Tomoda, Acta Crystallogr., Sect. B 53 (1997) 662–672.
[22] G.A. Jeffrey, An Introduction to Hydrogen Bonding, Oxford University Press,
New York, 1997.
[23] M. Albrecht, K. Witt, R. Fröhlich, O. Kataeva, Tetrahedron 58 (2002) 561–567.
[24] M. La Deda, A. Grisolla, I. Aiello, A. Crispini, M. Ghedini, S. Belviso, et al., J.
Chem. Soc. 16 (2004) 2424–2431.
Conclusions
The experimental and theoretical investigations of HQD have
been performed successfully by using NMR, IR & Raman, UV–vis
and quantum chemical calculations. The computational investiga-
tion of this compound by DFT (B3LYP and B3PW91) methods is
consistent with all the experimentally measured spectroscopic val-
ues. HQD gives an absorption peak at about 527 nm in the visible
region, and is associated with an optical band gap. This means that
HQD is visible light sensitive, and can be also used as a visible re-
gion sensor besides its good dye property.
[25] A. Salyam, Msc Thesis, Institute of Science and Technology, Gazi University,
2006.
Acknowledgments
[26] Z. Seferog˘lu, T. Hökelek, E. Sßahin, A. Saylam, N. Ertan, Acta Crystallogr., Sect. E:
Org. Pap. E62 (2006) o5488–o5489.
[27] A. Teimouri, A.N. Chermahini, K. Taban, H.A. Dabbagh, Spectrochim. Acta Part A
72 (2009) 369–377.
[28] V. Krishnakumar, R. Ramasamy, Spectrochim. Acta Part A 61 (2005) 673–683.
[29] A.Z. El-Sonbati, A.A.M. Belal, S.I. El-Wakeel, M.A. Hussien, Spectrochim. Acta
Part A 60 (2004) 965–972.
[30] V. Balachandran, K. Parimala, J. Mol. Struct. 1007 (2012) 136–145.
[31] A.K. Singh, R. Prakash, A.D.D. Dwivedi, P. Chakrabarti, IEEE Electron Device
Lett. 29 (2008) 571–574.
[32] C. Dridi, M.B. Ghedira, F. Vocanson, R.B. Chaabane, J. Davenas, H.B. Ouada,
Semicond. Sci. Technol. 24 (2009). 105007 (1–10).
[33] A. Elmansouri, A. Outzourhit, A. Lachkar, N. Hadik, A. Abouelaoualim, M.E.
Achour, A. Oueriagli, E.L. Ameziane, Synth. Met. 159 (2009) 292–297.
[34] E.S. Balcerzak, A. Iwan, M. Krompiec, M. Siwy, D. Tapa, A. Sikora, M. Palewicz,
Synth. Met. 160 (2010) 2208–2218.
[35] R.C. Denney, Dictionary of Spectroscopy, second ed., Wiley, New York, 1982. p.
119.
The authors wish to thank to the Research Foundation of Bozok
University for the financial support for this study, to Mr. Mustafa
Akgül for checking grammatical errors, and to Prof. Dr. Zeki
Büyükmumcu for his valuable discussions. In this paper DFT calcu-
lations were performed at TUBITAK ULAKBIM, High Performance
and Grid Computing Center (TR-Grid e-Infrastructure).
_
_
Appendix A. Supplementary data
Supplementary data associated with this article can be found, in
[36] Ö. Güllü, M. Çankaya, M. Biber, A. Türüt, J. Phys. Condens. Matter 20 (2008).
215210 (1–6).
References
[37] J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi 15 (1966) 627–637.
[38] A.K. Singh, A.D.D. Dwivedi, P. Chakrabarti, R. Prakash, J. Appl. Phys. 105 (2009).
114506 (1-6).
[39] M. Çakar, Ö. Güllü, N. Yıldırım, A. Türüt, J. Electron. Mater. 38 (2009) 1995–
1999.
[1] M. Dakiky, I. Nemcova, Dyes Pigm. 44 (2000) 181–193.
[2] A. Navarro, F. Sanz, Dyes Pigm. 40 (1999) 131–139.
[3] J. Tao, G. Mao, L. Daehne, J. Am. Chem. Soc. 121 (1999) 3475–3485.
[4] F. Karci, N. Ertan, Dyes Pigm. 64 (2005) 243–249.
[5] F. Karci, N.I. Sßener, H. Deligöz, Dyes Pigm. 59 (2003) 53–61.
[6] F. Karci, N.I. Sßener, H. Deligöz, Dyes Pigm. 62 (2004) 131–140.
[40] K. Gupta, P.C. Janab, A.K. Meikap, Synth. Met. 160 (2010) 1566–1573.