Page 5 of 8
ACS Catalysis
Oxygen and Phenylsilane by the Use of Bis(acetylacetonato)cobalt(II).
Cobalt-Catalyzed Oxidative Hydrofunctionalization Reactions. Synlett
2019, 30, 2015-2021.
Chem. Lett. 1989, 18, 1071-1074; (b) Kato, K.; Mukaiyama, T.,
Nitrosation of α,β-Unsaturated Carboxamide with Nitric Oxide and
Triethylsilane Catalyzed by Cobalt(II) Complex. Chem. Lett. 1990, 19,
1395-1398; (c) Waser, J.; Carreira, E. M., Catalytic Hydrohydrazination
of a Wide Range of Alkenes with a Simple Mn Complex. Angew. Chem.
Int. Ed. 2004, 43, 4099-4102; (d) Waser, J.; Nambu, H.; Carreira, E. M.,
Cobalt-Catalyzed Hydroazidation of Olefins: Convenient Access to
Alkyl Azides. J. Am. Chem. Soc. 2005, 127, 8294-8295; (e) Li, G.; Kuo,
J. L.; Han, A.; Abuyuan, J. M.; Young, L. C.; Norton, J. R.; Palmer, J.
H., Radical Isomerization and Cycloisomerization Initiated by H•
Transfer. J. Am. Chem. Soc. 2016, 138, 7698-7704; (f) Crossley, S. W.;
Barabe, F.; Shenvi, R. A., Simple, Chemoselective, Catalytic Olefin
Isomerization. J. Am. Chem. Soc. 2014, 136, 16788-16791; (g) Green, S.
A.; Matos, J. L.; Yagi, A.; Shenvi, R. A., Branch-Selective
Hydroarylation: Iodoarene-Olefin Cross-Coupling. J. Am. Chem. Soc.
2016, 138, 12779-12782; (h) Matos, J. L. M.; Vasquez-Cespedes, S.; Gu,
J.; Oguma, T.; Shenvi, R. A., Branch-Selective Addition of Unactivated
Olefins into Imines and Aldehydes. J. Am. Chem. Soc. 2018, 140,
16976-16981; (i) Ma, X.; Herzon, S. B., Intermolecular
Hydropyridylation of Unactivated Alkenes. J. Am. Chem. Soc. 2016,
138, 8718-8721; (j) Ma, X.; Herzon, S. B., Cobalt
bis(acetylacetonate)-tert-butyl hydroperoxide-triethylsilane: a general
1
2
3
4
5
6
7
8
(10) Vol'pin, M. E.; Levitin, I. Y.; Sigan, A. L.; Nikitaev, A. T.,
Current state of organocobalt(IV) and organorhodium(IV) chemistry. J.
Organomet. Chem. 1985, 279, 263-280.
(11) For selected recent examples: (a) Liu, W. Q.; Lei, T.; Zhou, S.;
Yang, X. L.; Li, J.; Chen, B.; Sivaguru, J.; Tung, C. H.; Wu, L. Z.,
Cobaloxime Catalysis: Selective Synthesis of Alkenylphosphine Oxides
under Visible Light. J. Am. Chem. Soc. 2019, 141, 13941-13947; (b)
Chen, B.; Wu, L. Z.; Tung, C. H., Photocatalytic Activation of Less
Reactive Bonds and Their Functionalization via Hydrogen-Evolution
Cross-Couplings. Acc. Chem. Res. 2018, 51, 2512-2523; (c) Yi, H.; Niu,
L.; Song, C.; Li, Y.; Dou, B.; Singh, A. K.; Lei, A., Photocatalytic
Dehydrogenative Cross-Coupling of Alkenes with Alcohols or Azoles
without External Oxidant. Angew. Chem. Int. Ed. 2017, 56, 1120 –1124.
For recent examples of photoredox-mediated Cu-catalyzed
hydroamination of electron-rich styrenes: (d) Xiong, Y.; Zhang, G.,
Visible-Light-Induced Copper-Catalyzed Intermolecular Markovnikov
Hydroamination of Alkenes. Org. Lett. 2019, 21, 7873-7877; (e) Gui, J.;
Xie, H.; Chen, F.; Liu, Z.; Zhang, X.; Jiang, F.; Zeng, W.,
Bronsted acid/visible-light-promoted Markovnikov hydroamination of
vinylarenes with arylamines. Org. Biomol. Chem. 2020, 18, 956–963
(12) Shevick, S. L.; Obradors, C.; Shenvi, R. A., Mechanistic
Interrogation of Co/Ni-Dual Catalyzed Hydroarylation. J. Am. Chem.
Soc. 2018, 140, 12056-12068.
(13) (a) Chiang, L.; Allan, L. E.; Alcantara, J.; Wang, M. C.; Storr, T.;
Shaver, M. P., Tuning ligand electronics and peripheral substitution on
cobalt salen complexes: structure and polymerisation activity. Dalton
Trans 2014, 43, 4295–4304; (b) Kochem, A.; Kanso, H.; Baptiste, B.;
Arora, H.; Philouze, C.; Jarjayes, O.; Vezin, H.; Luneau, D.; Orio, M.;
Thomas, F., Ligand Contributions to the Electronic Structures of the
Oxidized Cobalt(II) salen Complexes. Inorg. Chem. 2012, 51,
10557-10571.
(14) Levitin, I.; Sigan, A. L.; Vol'pin, M. E., Electrochemical
generation and reactivity of organo-cobalt(IV) and -rhodium(IV)
chelates. J. Chem. Soc., Chem. Commun. 1975. 469-470. It was reported
that an axial pyridine ligand had neglectable effect on the oxidation
potential of an alkylcobalt(III) complex in MeCN.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
reagent
combination
for
the
Markovnikov-selective
hydrofunctionalization of alkenes by hydrogen atom transfer. Beilstein J.
Org. Chem. 2018, 14, 2259–2265; For Co-catalyzed hydroelementations
via radical-polar crossover: (k) Shigehisa, H.; Aoki, T.; Yamaguchi,
S.; Shimizu, N.; Hiroya, K., Hydroalkoxylation of Unactivated Olefins
with Carbon Radicals and Carbocation Species as Key Intermediates. J.
Am. Chem. Soc. 2013, 135, 10306-10309; (l) Shigehisa, H.; Koseki, N.;
Shimizu, N.; Fujisawa, M.;
Niitsu, M.; Hiroya, K., Catalytic
Hydroamination of Unactivated Olefins Using a Co Catalyst for
Complex Molecule Synthesis. J. Am. Chem. Soc. 2014, 136,
13534-13537; (m) Shigehisa, H.; Hayashi, M.; Ohkawa, H.; Suzuki,
T.; Okayasu, H.; Mukai, M.; Yamazaki, A.; Kawai, R.; Kikuchi, H.;
Satoh, Y.; Fukuyama, A.; Hiroya, K., Catalytic Synthesis of Saturated
Oxygen Heterocycles by Hydrofunctionalization of Unactivated Olefins:
Unprotected and Protected Strategies. J. Am. Chem. Soc. 2016, 138,
10597-10604; (n) Date, S.; Hamasaki, K.; Sunagawa, K.; Koyama, H.;
Sebe, C.; Hiroya, K.; Shigehisa, H., Catalytic Direct Cyclization of
Alkenyl Thioester. ACS Catal. 2020, 10, 2039-2045; (o) Shepard, S. M.;
Diaconescu, P. L., Redox-Switchable Hydroelementation of a Cobalt
Complex Supported by a Ferrocene-Based Ligand. Organometallics
2016, 35, 2446-2453; (p) Vrubliauskas, D.; Vanderwal, C. D.,
Cobalt-Catalyzed Hydrogen Atom Transfer Induces Bicyclizations that
Tolerate Electron-rich and -deficient Intermediate Alkenes. Angew.
Chem. Int. Ed. 2020 doi: 10.1002/anie.202000252; For related
stereoselective transformations: (q) Touney, E. E.; Foy, N. J.; Pronin,
S. V., Catalytic Radical-Polar Crossover Reactions of Allylic Alcohols.
J. Am. Chem. Soc. 2018, 140, 16982-16987; (r) Discolo, C. A.; Touney,
E. E.; Pronin, S. V., Catalytic Asymmetric Radical-Polar Crossover
Hydroalkoxylation. J. Am. Chem. Soc. 2019, 141, 17527-17532; (s)
Ebisawa, K.; Izumi, K.; Ooka, Y.; Kato, H.; Kanazawa, S.; Komatsu, S.;
Nishi, E.; Hiroya, K. and Shigehisa, H., Catalyst- and Silane- Controlled
Enantioselective Hydrofunctionalization of Alkenes by TM-HAT and
(15) For details, please see SI-S28.
(16) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C., Visible Light
Photoredox Catalysis with Transition Metal Complexes: Applications in
Organic Synthesis. Chem. Rev. 2013, 113, 5322-5363.
(17) Zhou, Q. Q.; Zou, Y. Q.; Lu, L. Q.; Xiao, W. J.,
Visible-Light-Induced Organic Photochemical Reactions through
Energy-Transfer Pathways. Angew. Chem. Int. Ed. 2019, 58, 1586–1604.
Alterntively, this result could be attributable to the substantial
absorption of Co complexes at 380 nm.
(18) (a) Demarteau, J.; Debuigne, A.; Detrembleur, C., Organocobalt
Complexes as Sources of Carbon-Centered Radicals for Organic and
Polymer Chemistries. Chem. Rev. 2019, 119, 6906-6955; (b) Liao,
C.-M.; Hsu, C.-C.; Wang, F.-S.; Wayland, B. B.; Peng, C.-H., Living
radical polymerization of vinyl acetate and methyl acrylate mediated by
Co(Salen*) complexes. Polym. Chem. 2013, 4, 3098–3104; (c) Liu, X.;
Tian, L.; Wu, Z.; Zhao, X.; Wang, Z.; Yu, D.; Fu, X.,
Visible-light-induced synthesis of polymers with versatile end groups
mediated by organocobalt complexes. Polym. Chem. 2017, 8,
6033–6038.
RPC
Mechanism.
ChemRxiv
2019,
DOI:
10.26434/chemrxiv.9981395.v1; (t) Shen, X.; Chen, X.; Chen, J.; Sun,
Y.; Cheng, Z.; Lu, Z., Ligand-promoted cobalt-catalyzed radical
hydroamination of alkenes. Nature Communications 2020, 11, 783.; (u)
Lu, S.; Niankai, F.; Brian G., E.; Wai-Hang, L.; Michael O., F.; Robert
A., D. J.; Song, L., Dual Electrocatalysis Enables Enantioselective
Hydrocyanation of Conjugated Alkenes. ChemRxiv 2019, DOI:
10.26434/chemrxiv.9784625.v1.
(7) Zhou, X. -L.; Yang, F.; Sun, H. -L.; Yin, Y. -N.; Ye, W. -T.; Zhu,
R., Cobalt-Catalyzed Intermolecular Hydrofunctionalization of Alkenes:
Evidence for a Bimetallic Pathway. J. Am. Chem. Soc. 2019, 141,
7250-7255.
(8) Yahata, K.; Kaneko, Y.; Akai, S., Cobalt-Catalyzed Intermolecular
Markovnikov Hydroamination of Nonactivated Olefins: N2-Selective
Alkylation of Benzotriazole. Org. Lett. 2020, 22, 598-603.
(9) (a) Vol'pin, M. E.; Levitin, I. Y.; Sigan, A. L.; Halpern, J.; Tom, G.
M., Reactivity of organocobalt(IV) chelate complexes toward
nucleophiles: diversity of mechanisms. Inorg. Chim. Acta 1980, 41,
271-277; It is noted the irreversibility is likely attributable to the
reaction with a nucleophile (pyridine). In the absence of a nucleophile,
the oxidation is reversible; (b) Zhu, R., Emerging Catalyst Control in
(19) For an elegant example of on/off switch by chemical
reduction/oxidation, see ref. 5o.
(20) Bystron, T.; Horbenko, A.; Syslova, K.; Hii, K. K. M.;
Hellgardt, K.; Kelsall, G., 2-Iodoxybenzoic acid synthesis by oxidation
of 2-iodobenzoic acid at
a
boron-doped diamond anode.
ChemElectroChem 2018, 5, 1002–1005. It is noted this number was
obtained under strongly acidic conditions where 3 rendered more
oxidizing. Thus it is reasonable to conclude that the oxidative quenching
mechanism (E1/2[RuIII/RuII] = -0.81 V vs SCE), if exists at all, should
probably be less favored compared to the reductive quenching pathway
under the catalytic conditions.
(21) Hansch, C.; Leo, A.; Taft, R. W., A survey of Hammett
substituent constants and resonance and field parameters. Chem. Rev.
1991, 91, 165-195.
(22) Shigehisa, H., Functional Group Tolerant Markovnikov-Selective
Hydrofunctionalization of Unactivated Olefins Using a Cobalt Complex
as Catalyst. Synlett 2015, 26, 2479-2484.
(23) Schmidt, A.; Beutler, A.; Snovydovych, B., Recent Advances in
the Chemistry of Indazoles. Eur. J. Org. Chem. 2008, 2008, 4073–4095.
ACS Paragon Plus Environment