6524
E. M. Wilfong et al. / Bioorg. Med. Chem. Lett. 22 (2012) 6521–6524
5. Lundquist, J. J.; Debenham, S. D.; Toone, E. J. J. Org. Chem. 2000, 65, 8245.
6. Borsi, V.; Calderone, V.; Fragai, M.; Luchinat, C.; Sarti, N. J. Med. Chem. 2010, 53,
4285.
7. Parker, M. H.; Lunney, E. A.; Ortwine, D. F.; Pavlovsky, A. G.; Humblet, C.;
Brouillette, C. G. Biochemistry 1999, 38, 13592.
falls short of the maximum available. A diminished tightening pro-
duces less rigidification (and a diminished entropic penalty relative
to that which would accompany maximum enthalpic interaction).
From the perspective of free energy, as ligand size increases,
diminished favorable enthalpy (due to failure to maximize interac-
tions) is compensated by a diminished entropic penalty (less rigid-
ification). Unfortunately, the linkage ligands described here all
contact the same protein residues.1 Evidence supported this theory
8. Du, Y., Duke University 2006.
9. Hajduk, P. J.; Sheppard, G.; Nettesheim, D. G.; Olejniczak, E. T.; Shuker, S. B.;
Meadows, R. P.; Steinman, D. H.; Carrera, G. M.; Marcotte, P. A.; Severin, J.;
Walter, K.; Smith, H.; Gubbins, E.; Simmer, R.; Holzman, T. F.; Morgan, D. W.;
Davidsen, S. K.; Summers, J. B.; Fesik, S. W. J. Am. Chem. Soc. 1997, 119, 5818.
10. Civitello, E. R.; Rapoport, H. J. Org. Chem. 1994, 59, 3775.
11. Reddy, A. S.; Kumar, M. S.; Reddy, G. R. Tetrahedron Lett. 2000, 41, 6285.
12. Wilfong, E. M.; Locklear, U. N.; Toone, E. J. Bioorg. Med. Chem. Lett. 2010, 20, 280.
13. Edelhoch, H. Biochemistry 1948, 1967, 6.
14. Sigurskjold, B. W. Analytical Biochemistry 2000, 277, 260.
15. Christensen, T.; Gooden, D. M.; Kung, J. E.; Toone, E. J. J. Am. Chem. Soc. 2003,
125, 7357.
16. Holman, C. M.; Kan, C.-C.; Gehring, M. R.; Van Wart, H. E. Biochemistry 1999, 38,
677.
17. Johnson, L. L.; Pavlovsky, A. G.; Johnson, A. R.; Janowicz, J. A.; Man, C. F.;
Ortwine, D. F.; Purchase, C. F.; White, A. D.; Hupe, D. J. J. Biol. Chem. 2000, 275,
11026.
18. Wheland, G. W.; Brownell, R. M.; Mayo, E. C. J. Am. Chem. Soc. 1948, 70, 2492.
19. Ichihara, O.; Barker, J.; Law, R. J.; Whittaker, M. Molecular Informatics 2011, 30,
298.
20. Hooley, R. J.; Van Anda, H. J.; Rebek, J. J. Am. Chem. Soc. 2007, 129, 13464.
21. Krishnamurthy, V. M.; Bohall, B. R.; Semetey, V.; Whitesides, G. M. J. Am. Chem.
Soc. 2006, 128, 5802.
include the consistency of T
DS among linkage ligands and the lack
of change in CP as they hydrophobic effect would not be expected
D
to contribute. Further, we have recently demonstrated that trends
in enthalpy–entropy compensation do appear to trend with pro-
tein contraction for SCD.41 To fully probe whether interfacial
mobility and protein contraction could explain the trends seen
here, a ligand series contacting more regions of the SCD protein
would be required.
At least for the case of stromelysin-1, FBDD appears to be
enthalpically favored and entropically opposed. The origin of the
discrepancy between our results and those recently published by
Borsi et al.6 is unclear. One possibility is proton transfer events.
Consideration of both ligand binding and proton transfer events
is critical to interpretation of thermodynamic parameters. Many
functional groups have pKas in the physiologic range (pH 6–8),
including sulfonamides42–44 and phenols,45,46 highlighting the
importance of including proton transfer experiments during any
thermodynamic characterization. Clearly additional work is re-
quired to ascertain whether the results reported here are general-
izable, and we will report our results in due course.
22. Tanford, C. Science 1978, 1012, 200.
23. Williams, D. H.; Stephens, E.; O’Brien, D. P.; Zhou, M. Angew. Chem. Int. Ed. 2004,
43, 6596.
24. Schote, U.; Ganz, P.; Fahr, A.; Seelig, J. J. Pharm. Sci. 2002, 91, 856.
25. Schote, U.; Seelig, J. Biochim. Biophys. Acta Biomembr. 1998, 1415, 135.
26. Tanford, C. The Hydrophobic Effect; John Wiley & Sons: New York, 1980.
27. Ackroyd, P. C.; Cleary, J.; Glick, G. D. Biochemistry 2001, 40, 2911.
28. Cole, J. L.; Garsky, V. M. Biochemistry 2001, 40, 5633.
29. Malham, R.; Johnstone, S.; Bingham, R. J.; Barratt, E.; Phillips, S. E. V.; Laughton,
C. A.; Homans, S. W. J. Am. Chem. Soc. 2005, 127, 17061.
30. Seelig, J.; Ganz, P. Biochemistry 1991, 30, 9354.
Acknowledgments
31. Syme, N. R.; Simon, C. D.; Phillips, E. V.; Homans, S. W. ChemBioChem 2007, 8,
1509.
32. Chandler, D. Oxford University Press, New York, 1987, pp 5.
33. Chandler, D. Nature 2005, 437, 640.
E.J.T. acknowledges funding for this work by the NIH
(1R01GM57179). E.M.W. acknowledges funding for her training
from the NIH (5T32GM007171).
34. Sturtevant, J. M. Proc. Natl. Acad. Sci. U.S.A. 1977, 74, 2236.
35. Spolar, R. S.; Record, M. T. Science 1994, 263, 777.
36. Murphy, K. P.; Freire, E. Adv. Protein Chem. 1992, 43, 313.
37. Livingstone, J. R.; Spolar, R. S.; Record, M. T. Biochemistry 1991, 30, 4237.
38. Hornig, J. F.; Hirschfelder, J. O. J. Chem. Phys. 1812, 1952, 20.
39. London, F. Z. Phys. 1930, 63, 245.
Supplementary data
40. Margenau, H. J. Chem. Phys. 1938, 6, 896.
Supplementary data associated with this article can be found, in
41. Wilfong, E. M.; Kogiso, Y.; Muthukrishnan, S.; Kowatz, T.; Du, Y.; Bowie, A.;
Naismith, J. H.; Hadad, C. M.; Toone, E. J.; Gustafson, T. L. J. Am. Chem. Soc. 2011,
133, 11515.
42. Cammarata, A.; Allen, R. C. J. Pharm. Sci. 1967, 56, 640.
43. Remko, M.; von der Lieth, C.-W. Bioorg. Med. Chem. 2004, 12, 5395.
44. Combinatorial Chemistry; Simon, M. I., Abelson, J. N., Eds.; Academic Press: San
Diego, 1996.
45. Fujita, T. J. Med. Chem. 1966, 9, 797.
46. Liptak, M. D.; Gross, K. C.; Seybold, P. G.; Feldgus, S.; Shields, G. C. J. Am. Chem.
Soc. 2002, 124, 6421.
References and notes
1. Olejniczak, E. T.; Hajduk, P. J.; Marcotte, P. A.; Nettesheim, D. G.; Meadows, R.
P.; Edalji, R.; Holzman, T. F.; Fesik, S. W. J. Am. Chem. Soc. 1997, 119, 5828.
2. Hajduk, P. J.; Greer, J. Nature Reviews Drug Discovery 2007, 6, 211.
3. Jencks, W. P. Proc. Natl. Acad. Sci. U.S.A. 1981, 78, 4046.
4. Ahmad, N.; Gabius, H.-J.; Sabesan, S.; Oscarson, S.; Brewer, C. F. Glycobiology
2004, 14, 817.