short as 2 minutes with reaching the maximum fluorescent
intensity.
We also explored the potential applications of E1 in
biological systems. Incubation of Hela cells with E1 for
30 min at 37 1C was followed by the addition of NaHS (with
or without CTAB) and then incubation for another 30 min. As
shown in Fig. 6, Hela cells with only E1 show low fluorescence,
while in the presence of NaHS, Hela cells show strong
fluorescence and stronger with CTAB. This result demon-
strates that E1 has potential in visualizing H2S levels change
of living cells.
In summary, a new ESIPT-based ratiometric fluorescence
probe E1 for H2S was reported. E1 responds to H2S very
quickly and showed a 30-fold fluorescence enhancement in
2 minutes. Moreover, E1 can detect H2S quantitatively with a
detection limit as low as 0.12 mM. The potential for biological
applications of E1 was confirmed by employing it for fluores-
cence imaging of H2S in living cells.
Fig. 4 Hydrogen sulfide concentration-dependent fluorescence intensity
changes of E1 in 20 mM Tris-HCl buffer with 1 mM CTAB (pH 7.4).
Concentrations of 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 mM of NaHS were reacted
with 10 mM E1. Slite 10, 5 (lex = 295 nm).
We are grateful for the financial support from National Basic
Research Program of China (973 Program, 2010CB126100),
the National High Technology Research and Development
Program of China (863 Program 2011AA10A207), the China
111 Project (Grant B07023), and the Shanghai Leading Academic
Discipline Project (B507).
Notes and references
1 (a) H. Kimura, Antioxid. Redox Signaling, 2010, 12, 1111; (b) R. Wang,
Antioxid. Redox Signaling, 2010, 12, 1061; (c) M. M. Gadalla and
S. H. Snyder, J. Neurochem., 2010, 113, 14.
2 (a) U. Sen, P. K. Mishra, N. Tyagi and S. C. Tyagu, Cell Biochem.
Biophys., 2010, 57, 49; (b) C. Miao and Z. Li, Br. J. Pharmacol.,
2012, 165, 643.
Fig. 5 Reaction time profile of E1 and H2S (E1 10 mM, H2S 50 mM)
in 20 mM Tris-HCl buffer with 1 mM CTAB, pH 7.4. Slite 10, 5 (lex
295 nm).
=
3 (a) D. Jimenez, R. Martınez-Manez, F. Sancenon, J. V. Ros-Lis,
´ ´ ´ ´
A. Benito and J. Soto, J. Am. Chem. Soc., 2003, 125, 9000;
(b) D. G. Searcy and M. A. Peterson, Anal. Biochem., 2004,
324, 269; (c) J. Radford-Knoery and G. A. Cutter, Anal. Chem.,
1993, 65, 976–982.
4 (a) A. R. Lippert, E. J. New and C. J. Chang, J. Am. Chem. Soc.,
2011, 133, 10078; (b) H. Peng, Y. Cheng, C. Dai, A. L. King,
B. L. Predmore, D. J. Lefer and B. Wang, Angew. Chem., Int. Ed.,
2011, 50, 9672; (c) C. Liu, J. Pan, S. Li, Y. Zhao, L. Y. Wu,
C. E. Berkman, A. R. Whorton and M. Xian, Angew. Chem., Int.
Ed., 2011, 50, 10327; (d) K. Sasakura, K. Hanaoka, N. Shibuya,
Y. Mikami, Y. Kimura, T. Komatsu, T. Ueno, T. Terai, H. Kimura
and T. Nagano, J. Am. Chem. Soc., 2011, 133, 18003; (e) Y. Qian,
J. Karpus, O. Kabil, S. Y. Zhang, H. L. Zhu, R. Banerjee, J. Zhao
and C. He, Nat. Commun., 2011, 2, 495; (f) F. Yu, P. Li, P. Song,
B. Wang, J. Zhao and K. Han, Chem. Commun., 2012, 48, 2852;
(g) L. A. Montoya and M. D. Pluth, Chem. Commun., 2012,
48, 4767; (h) C. Liu, B. Peng, S. Li, C.-M. Park, A. R. Whorton
and M. Xian, Org. Lett., 2012, 14, 2184.
5 N. L. Whitfield, E. L. Kreimier, F. C. Verdial, N. Skovgaard and
K. R. Olson, Am. J. Physiol., 2008, 294, R1930.
6 J. Furne, A. Saeed and M. D. Levitt, Am. J. Physiol., 2008,
295, R1479.
7 X. Yang, Y. Guo and R. M. Strongin, Angew. Chem., Int. Ed., 2011,
50, 10690.
8 Y. Lu, S. Huang, Y. Liu, S. He, L. Zhao and X. Zeng, Org. Lett.,
2011, 13, 5274.
Fig. 6 Images of H2S detection in Hela cells using E1 (100 mM) at 37 1C.
(a) Bright-field image of Hela cells incubated with E1 for 60 min.
(b) Bright-field image of Hela cells incubated with E1 for 60 min with
NaHS (100 mM) added for the final 30 min. (c) Bright-field image of Hela
cells incubated with E1 for 60 min with NaHS (100 mM) and CTAB
(1 mM) added for the final 30 min. (d) Fluorescence image of Hela cells
incubated with E1 for 60 min. (e) Fluorescence image of Hela cells
incubated with E1 for 60 min with NaHS (100 mM) added for the final
30 min. (f) Fluorescence image of Hela cells incubated with E1 for 60 min
with NaHS (100 mM) and CTAB (1 mM) added for the final 30 min.
Since the catabolism of H2S is very fast in vivo, we also
performed time-based experiments to study the kinetics of E1
reacting with H2S. As shown in Fig. 5, the reaction time was as
9 (a) P. Wang, J. Liu, X. Lv, Y. Liu, Y. Zhao and W. Guo, Org. Lett.,
2012, 14, 520; (b) L. Xu, Y. Xu, W. Zhu, C. Yang, L. Han and
X. Qian, Dalton Trans., 2012, 41, 7212.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 10871–10873 10873