Page 7 of 7
ChemComm
45 b CSIRO Materials Science and Engineering, Clayton, VIC 3168,
Australia
*This article is part of the ChemComm 'Metalꢀorganic frameworks' web
themed issue.
† Electronic Supplementary Information (ESI) available: synthesis of
50 H2L1, H2L1Ac, H2L1iBu, and H2L2; synthetic details and activation
conditions for the MOFs; 1H NMR digestion studies; TGA and EDS data;
and crystal data and refinement details for [Zn4O(L1)3] and αꢀ
[Zn4O(L2)3]. See DOI: 10.1039/b000000x/.
55 1. S. Kitagawa, R. Kitaura, SꢀI. Noro, Angew. Chem. Int. Ed., 2004, 43,
2334; G. Ferey, Chem. Soc. Rev., 2008, 37, 191.
2. (a) M. Eddaoudi, J. Kim, N. L. Rosi, D. T. Vodak, J. Wachter, M.
O'Keeffe, O. M. Yaghi, Science, 2002, 295, 469; (b) H. Deng, C. J.
Doonan, H. Furukawa, R. B. Ferreira, J. Towne, C. B. Knobler, B.
60
65
Wang, O. M. Yaghi, Science, 2010, 327, 846.
3. K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D.
Bloch, Z. R. Herm, T.ꢀH. Bae, J. R. Long, Chem. Rev., 2012, 112,
724; J.ꢀR. Li, J. Sculley, H.ꢀC. Zhou, Chem. Rev., 2012, 112, 869.
4. A. Corma, H. Garcia, F. X. Llabres, I. Xamena, Chem. Rev., 2010,
110, 4607; L. Ma, C. Abney, W. Lin, Chem. Soc. Rev., 2009, 38,
1248; A. U. Czaja, N. Trukhan, U. Müller, Chem. Soc. Rev., 2009,
38, 1284.
Figure 2. CO2 enthalpy of adsorption for
αꢀ[Zn4O(L1)3], and
IRMOFꢀ1.13
controllably yield nonꢀinterpenetrated and interpenetrated
materials but in different solvents. This led us to propose that the
hydrolysis rate in the different solvents had a critical role in
control of interpenetration; specifically, reactions in DMF led to
faster hydrolysis and an interpenetrated product. Monitoring the
rate of hydrolysis of the ester protecting group for framework
5
5. O. M. Yaghi, Nature Materials, 2007, 6, 92.; S. R. Batten, R.
Robson, Angew. Chem. Int. Ed., 1998, 37, 1460.
70 6. J. S. Seo, D. Whang, H. Lee, S. I. Jun, J. Oh, Y. J. Jeon, K. Kim,
Nature, 2000, 404, 982; C.ꢀD. Wu, A. Hu, L. Zhang, W. Lin, J. Am.
Chem. Soc., 2005, 127, 8940; B. Chen, L. Wang, Y. Xiao, F. R.
Fronczek, M. Xue, Y. Cui, G. Qian, Angew. Chem. Int. Ed., 2009, 48,
500; X.ꢀP. Zhou, Z. Xu, M. Zeller, A. D. Hunter, Chem. Commun.,
10 synthesis reactions using H2L1Ac in DMF and DEF revealed this
was not the case (Fig. S7). In fact, crystal growth (6ꢀ8 hrs)
proceeds considerably faster than link deprotection (up to 36 hrs)
indicating the links are deprotected within the framework. While
Kim and coꢀworkers have demonstrated that MOF topology is
15 sensitive to small changes in the reaction pH,17 we can rule out
this effect for the diol systems as both [Zn4O(L1)3] and αꢀ
[Zn4O(L1)3] can be synthesised in the presence of base and acid.
Also in contrast to previous work,2a, 18 the reactions give phase
pure products independent of concentration. Thus, these
20 observations, coupled with the fact that H2L1Ac and H2L1iBu form
both types of frameworks, point to steric effects deriving from
both the link and the solvent having a role in the control of
interpenetration. Recently, solventꢀmediated control of
interpenetration has been observed for other MOF systems.19
This work describes the controlled ‘oneꢀpot’ syntheses of
MOF materials with two different pore structures bearing
accessible alcohol functional groups. Our studies show that
suppression of framework interpenetration and control of pore
architectures is not only the result of simple steric arguments for
30 the ligand but points toward other mechanisms such as solvent
‘templating’. These findings elucidate novel methodology for
synthesizing alcohol functionalized MOFs with controlled pores
sizes whereby high molecular weight solvents may be used to
control interpenetration. We are currently exploring masking
35 group strategies and solvent combinations to facilitate
simultaneous control of pore chemistry and interpenetration in
MOFs constructed from longer organic links.
75
2009, 5439; E. D. Bloch, D. Britt, C. Lee, C. J. Doonan, F. J. Uribeꢀ
Romo, H. Furukawa, J. R. Long, O. M. Yaghi, J. Am. Chem. Soc.,
2010, 132, 14382.
7. K. L. Mulfort, O. K. Farha, C. L. Stern, A. A. Sarjent, J. T. Hupp, J.
Am. Chem. Soc., 2009, 131, 3866; T. Devic, P. Horcajada, C. Serre,
F. Salles, G. Maurin, B. Moulin, D. Heurtaux, G. Clet, A. Vimont, Jꢀ
M, Greneche, B. Le Ouay, F. Moreau, E. Magnier, Y. Filinchuk, J.
Marrot, JꢀC, Lavalley, M. Daturi, G. Ferey, J. Am. Chem. Soc., 2010,
132, 1127; K. S. Jeong, Y. B. Go, S. M. Shin, S. J. Lee, J. Kim, O.
M. Yaghi, N. Jeong, Chem. Sci., 2011, 2, 877.
80
85 8. Z. Wang, S. M. Cohen, Chem. Soc. Rev., 2009, 38, 1315; S. M.
Cohen, Chem. Rev., 2012, 112, 970.
9. M. J. Ingleson, J. P. Barrio, J. B. Guilbaud, Y. Z. Khimyak, M. J.
Rosseinsky, Chem. Commun., 2008, 23, 2680.
10. S. R. Caskey, A. G. WongꢀFoy, A. J. Matzger, J. Am. Chem. Soc.,
2008, 130, 10870; N. L. Rosi, J. Kim, M. Eddaoudi, B. L. Chen, M.
O’Keeffe, O. M. Yaghi, J. Am. Chem. Soc., 2005, 127, 1504.
11. K. S. Walton, R. Q. Snurr, J. Am. Chem. Soc., 2007, 129, 8552.
12. C. K. Brozek, M. Dincă, Chem. Sci., 2012, 3, 2110; X. Song, T. K.
Kim, H. Kim, D. Kim, S. Jeong, H. R. Moon, M. S. Lah Chem.
Mater. 2012, 10.1021/cm301605w.
13. J.ꢀS. Choi, W.ꢀJ. Son, J. Kim, W.ꢀS. Ahn, Micropor. Mesopor.
Mater. 2008, 116, 72.
14. T. Yamada, H. Kitagawa , J. Am. Chem. Soc., 2009, 131, 6312.
15. J. M. Roberts, O. K. Farha, A. A. Sarjeant, J. T. Hupp, K. A. Scheidt,
Cryst. Growth Des., 2011, 11, 4747.
16. R. K. Deshpande, J. L. Minnaar, S. G. Telfer, Angew. Chem., Int. Ed.,
2010, 49, 4598; R. K. Deshpande, G. I. N. Waterhouse, G. B.
Jameson, S. G. Telfer, Chem. Commun., 2012, 48, 1574; A. S. Gupta,
R. K. Deshpande, L. Liu, G. I. N. Waterhouse, S. G. Telfer,
CrystEngComm, 2012, 10.1039/c2ce25854d.
90
95
25
100
105
17. H. Kim, S. Das, M. G. Kim, D. N. Dybtsev, Y. Kim, K. Kim, Inorg.
Chem., 2011, 50, 3691.
18. J. Zhang, L. Wojtas, R. W. Larsen, M. Eddaoudi, M. J. Zaworotko, J.
Am. Chem. Soc., 2009, 131, 17040.
MRH, CJD and CJS gratefully acknowledge the Australian
Research Council for funding.
110 19. M. Guo, Z.ꢀM. Sun, J. Mater. Chem., 2012, 22, 15939; J. Duan, J.
Bai, B. Zheng, Y. Li, W. Ren, Chem. Commun., 2011, 47, 2556; L.
Ma, W. Lin, J. Am. Chem. Soc., 2008, 130, 13834; J. M. Falkowski,
C. Wang, S. Liu, W. Lin, Angew. Chem. Int. Ed., 2011, 50, 8674.
40 Notes and references
a School of Chemistry & Physics, The University of Adelaide, Adelaide,
Australia. CJD: Phone +61 8 8303 5770. Fax. +61 8 8303 4358. Email:
This journal is © The Royal Society of Chemistry [year]
Journal Name, [year], [vol], 00–00 | 3