hexahydrocyclopenta[c]pyrrole derivative 54a displayed a more
than twofold higher solubility in both the in vitro assay medium
and water (pH 7.4) as compared with AFQ-056 (1). Moreover,
this compound also displayed an improved profile with respect to
metabolic stability in human and rat liver microsomes. As a
consequence, the fast and extensive metabolism of compound 1
observed in healthy subjects after single dose administration
could potentially be positively modulated with compound 54a.17
In contrast, several structurally different candidates such as 21,
22, 47, 70, and 87 revealed a very poor metabolic stability, which
led to an instant termination of further development. The
observed instability could be reduced either to specific N-
substituents like an ethyloxycarbonyl group in compound 21 – its
methyl analog 9 proved to be markedly more stable – or to the
specific type of the bicyclic scaffold, for example in spiro
compound 87, which ring system might be metabolically opened
up. In general, metabolic stability was found to be noticeably
higher in human than in rat liver microsomes for almost all tested
compounds.
compared with AFQ-056, leveraging a further development and
characterization in vivo to demonstrate safety and efficacy in the
treatment of L-DOPA induced dyskinesia.
Acknowledgments
The authors warmly thank Andrea Baude, Sabine Falk and
Christiane Reinbach for expert technical assistance in in vitro
activity experiments, Dr. Meik Sladek for providing the in vitro
binding data, Michelle Werner for ascertaining metabolic
stability data, and Jens Neubauer and Kathleen Wolff for
solubility determinations.
Supplementary data
Supplementary data (experimental details for the synthesis and
characterization of intermediate and final products) associated
with this article can be found, in the online version, at http://...
References and notes
Table 3. Solubility and metabolic stability data
1.
neurobiology, neurology and psychiatry 2002, 8, 562.
2. Jaeschke, G.; Wettstein, J. G.; Nordquist, R. E.; Spooren, W.
Expert Opinion on Therapeutic Patents 2008, 18, 123.
3. Pin, J. P.; Kniazeff, J.; Liu, J.; Binet, V.; Goudet, C.; Rondard, P.;
Prezeau, L. The FEBS journal 2005, 272, 2947.
4. Crawford, J. H.; Wainwright, A.; Heavens, R.; Pollock, J.; Martin,
D. J.; Scott, R. H.; Seabrook, G. R. Neuropharmacology 2000, 39, 621.
5. Gross, C.; Berry-Kravis, E. M.; Bassell, G. J.
Petroff, O. A. The Neuroscientist : a review journal bringing
Compound
ID
Solubility Aa
[µM]
Solubility Bb
[µg/mL]
CLint (h/r)c
(µL/min/mg)
1
190
440
Nt
26
19
Nt
24
17
24
Nt
Nt
Nt
Nt
Nt
60
Nt
Nt
Nt
51 / 134
33 / 314
69 / 266
68 / 458
67 / 385
41 / 120
428 / 2718
141 / 889
Nt
6
Neuropsychopharmacology : official publication of the American College of
Neuropsychopharmacology 2012, 37, 178.
8
6.
Berg, D.; Godau, J.; Trenkwalder, C.; Eggert, K.; Csoti, I.; Storch,
9
274
466
170
Nt
A.; Huber, H.; Morelli-Canelo, M.; Stamelou, M.; Ries, V.; Wolz, M.;
Schneider, C.; Di Paolo, T.; Gasparini, F.; Hariry, S.; Vandemeulebroecke,
M.; Abi-Saab, W.; Cooke, K.; Johns, D.; Gomez-Mancilla, B. Movement
disorders : official journal of the Movement Disorder Society 2011, 26, 1243.
11a
12
21
22
35
47
52a
54a
60
70
7.
Zerbib, F.; Bruley des Varannes, S.; Roman, S.; Tutuian, R.;
Galmiche, J. P.; Mion, F.; Tack, J.; Malfertheiner, P.; Keywood, C.
Alimentary pharmacology & therapeutics 2011, 33, 911.
8.
Keywood, C.; Wakefield, M.; Tack, J. Gut 2009, 58, 1192.
Nt
9.
Ribeiro, F.; Pires, R. W.; Ferguson, S. G. Mol Neurobiol 2011, 43,
6
1.
10.
Grégoire, L.; Morin, N.; Ouattara, B.; Gasparini, F.; Bilbe, G.;
Nt
155 / 983
71 / 651
28 / 54
Johns, D.; Vranesic, I.; Sahasranaman, S.; Gomez-Mancilla, B.; Di Paolo, T.
Parkinsonism & Related Disorders 2011, 17, 270.
Nt
11.
Rocher, J.-P.; Bonnet, B.; Bolea, C.; Lutjens, R.; Le Poul, E.; Poli,
S.; Epping-Jordan, M.; Bessis, A.-S.; Ludwig, B.; Mutel, V. Current Topics
in Medicinal Chemistry 2011, 11, 680.
470
Nt
12.
13.
Emmitte, K. A. ACS Chemical Neuroscience 2011, 2, 411.
Lovering, F.; Bikker, J.; Humblet, C. Journal of Medicinal
30 / 139
278 / 1100
758 / 734
Chemistry 2009, 52, 6752.
Nt
14.
Abel, U. WO2012152854; 2012.
15.
1996, 521.
16.
46.
17.
Müller, S.; Liepold, B.; Roth, G. J.; Bestmann, H. J. Synlett 1996,
Sonogashira, K. Journal of Organometallic Chemistry 2002, 653,
Walles, M.; Wolf, T.; Jin, Y.; Ritzau, M.; Leuthold, L. A.;
87
76
a
Kinetic solubility in assay medium (0.5% DMSO/TRIS
buffer).
b Thermodynamic solubility in water (pH = 7.4).
c Intrinsic clearance in human and rat liver microsomes.
Krauser, J.; Gschwind, H.-P.; Carcache, D.; Kittelmann, M.; Ocwieja, M.;
Ufer, M.; Woessner, R.; Chakraborty, A.; Swart, P. Drug Metabolism and
Disposition 2013, 41, 1626.
In conclusion, we could show that based on the chemical
structure of Novartis’ clinical mGluR5 NAM AFQ-056
(Mavoglurant) various modifications of the bicyclic core
structure were well tolerated by the receptor. By means of a
scaffold hopping approach a diverse set of potent analogs
structurally derived from fused or bridged bicyclic scaffolds or
spiro compounds was generated. Most notably, compound 54a
not only showed equipotency on the mGlu5 receptor but also an
improved aqueous solubility and metabolic stability profile as