Journal of the American Chemical Society
Communication
McLean, D. G.; Fleitz, P. A.; Cooper, T. M.; Drobizhev, M.; Makarov,
N. S.; Rebane, A.; Kim, K.-Y.; Farley, R.; Schanze, K. S. Inorg. Chem.
2007, 46, 6483. (e) Vestberg, R.; Westlund, R.; Eriksson, A.; Lopes,
C.; Carlsson, M.; Eliasson, B.; Glimsdal, E.; Lindgren, M.; Malmstrom,
E. Macromolecules 2006, 39, 2238.
(2) (a) McKay, T. J.; Staromlynska, J.; Wilson, P.; Davy, J. J. Appl.
Phys. 1999, 85, 1337. (b) Sutherland, R. L.; Brant, M. C.; Heinrichs, J.;
Rogers, J. E.; Slagle, J. E.; McLean, D. G.; Fleitz, P. A. J. Opt. Soc. Am. B
2005, 22, 1939.
(3) (a) Albota, M.; Beljonne, D.; Bredas, J.-L.; Ehrlich, J. E.; Fu, J.-Y.;
Heikal, A. A.; Hess, S. E.; Kogej, T.; Levin, M. D.; Marder, S. R.;
McCord-Maughon, D.; Perry, J. W.; Rockel, H.; Rumi, M.;
Subramaniam, G.; Webb, W. W.; Wu, X.-L.; Xu, C. Science 1998,
281, 1653. (b) McIlroy, S. P.; Clo, E.; Nikolajsen, L.; Frederiksen, P.
K.; Nielsen, C. B.; Mikkelsen, K. V.; Gothelf, K. V.; Ogilby, P. R. J. Org.
Chem. 2005, 70, 1134. (c) Drobizhev, M.; Rebane, A.; Suo, Z.;
Spangler, C. W. J. Luminesc. 2005, 111, 291. (d) He, G. S.; Tan, L.-S.;
Zheng, Q.; Prasad, P. N. Chem. Rev. 2008, 108, 1245.
(4) Sonogashira, K.; Fujikura, Y.; Yatake, T.; Toyoshima, N.;
Takahashi, S.; Hagihara, N. J. Organomet. Chem. 1978, 145, 101.
(5) Mardelli, M.; Olmsted, J. J. Photochem. 1977, 7, 277.
(6) Scaiano, J. C.; Redmond, R. W.; Mehta, B.; Arnason, J. T.
Photochem. Photobiol. 1990, 52, 655.
chromophores are very effective pulse limiters (see SI, Figure
S61b)
The 2PA spectra of the complexes show a distinct peak at
transition wavelengths shorter than the S0−S1 transition in the
one-photon absorption (1PA) spectra, which can be explained
by alternative parity selection rules for 1PA and 2PA
transitions.3c By analogy to the 1PA spectra, the 2PA bands
red-shift with increasing π-conjugation length. Note that the
peak 2PA values increase approximately 2-fold going from
single ligand chromophores TPV0-L and TPV1-L to the
corresponding Pt-complexes TPV0 and TPV1, and more than
2-fold going from TPV2-L to TPV2. The observation that in
TPV-T2 and crossTPV3 the NLT shows larger 2PA cross
sections at the shorter wavelengths than 2PEF may be due to
the excited state absorption occurring from excited singlet state
during the duration of the laser pulse, thus further augmenting
the strong nonlinear-optical response.
In conclusion, a series of p-(phenylene vinylene) substituted
platinum acetylide chromophores have been synthesized and
investigated under one- and two-photon excitation. Nano-
second transient absorption shows that all of the chromophores
feature strong, broad T−T absorption in the visible and near-
infrared. The 2PA spectra for the chromophores were measured
by using the traditional 2PEF approach, and with a newly
developed NLT approach, and two approaches afford
consistent spectral profiles and absolute maximum σ2 values.
The chromophores feature considerable σ2 in a spectral region
that overlaps nicely with the region of large T−T absorption.
The results suggest that the OPV-based platinum acetylide
systems are promising candidates for practical application as the
active chromophores in broad temporal and frequency
responsive optical power limiting materials. Investigations in
progress seek to characterize the efficacy of these chromo-
phores to exhibit a broad-band nonlinear absorption response
in solution and in solid matrices.
(7) Wilson, J. S.; Chawdhury, N.; Al-Mandhary, M. R. A.; Younus,
M.; Khan, M. S.; Raithby, P. R.; Kohler, A.; Friend, R. H. J. Am. Chem.
Soc. 2001, 123, 9412.
(8) Rogers, J. E.; Hall, B. C.; Hafnagle, D. C.; Slagle, J. E.; Ault, A. P.;
McLean, D. G.; Fleitz, P. A.; Cooper, T. M. J. Phys. Chem. A 2005, 122,
214708.
ASSOCIATED CONTENT
* Supporting Information
■
S
X-ray structure of crossTPV1, experimental details, character-
ization and photophysical data. This material is available free of
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This research was supported by the Air Force Office of
Scientific Research (Grant Nos. FA-9550-06-1-1084 and
FA9550-09-1-0219). K.A.A. wishes to acknowledge the Na-
tional Science Foundation and the University of Florida for
funding of the purchase of the X-ray equipment.
REFERENCES
■
(1) (a) Liao, C.; Shelton, A. H.; Kim, K.-Y.; Schanze, K. S. ACS Appl.
Mater. Interfaces 2011, 3, 3225. (b) Haley, J. E.; Krein, D. M.;
Monahan, J. L.; Burke, A. R.; McLean, D. J.; Slagle, J. E.; Fratini, A.;
Cooper, T. M. J. Phys. Chem. A 2011, 115, 265. (c) Liu, R.; Li, Y.; Li,
Y.; Zhu, H.; Sun, W. J. Phys. Chem. A 2010, 114, 12639. (d) Rogers, J.
E.; Slagle, J. E.; Krein, D. M.; Burke, A. R.; Hall, B. C.; Fratini, A.;
19349
dx.doi.org/10.1021/ja309393c | J. Am. Chem. Soc. 2012, 134, 19346−19349