Communication
ChemComm
to 2, which goes along with a reorganisation of the arm in 2 Notes and references
from the porphyrin to the phenanthroline station as visible in
1 D. L. Nelson and M. M. Cox, Lehninger Principles of Biochemistry,
W. H. Freeman and Company, New York, 5th edn, 2008.
2 (a) S. G. Bell and B. L. Vallee, ChemBioChem, 2009, 10, 55; (b) H. J.
Forman, M. Maiorino and F. Ursini, Biochemistry, 2010, 49, 835.
3 (a) M.-M. Russew and S. Hecht, Adv. Mater., 2010, 22, 3348;
(b) Molecular Switches, ed. B. L. Feringa and W. R. Browne, Wiley-
VCH, Weinheim, 2nd edn, 2011; (c) A. C. Fahrenbach, S. C. Warren,
J. T. Incorvati, A.-J. Avestro, J. C. Barnes, J. F. Stoddart and
B. A. Grzybowski, Adv. Mater., 2013, 25, 331.
4 Some recent reviews: (a) M. von Delius and D. A. Leigh, Chem. Soc.
Rev., 2011, 40, 3656; (b) A. Coskun, M. Banaszak, R. D. Astumian,
J. F. Stoddart and B. A. Grzybowski, Chem. Soc. Rev., 2012, 41, 19;
(c) S. F. M. van Dongen, S. Cantekin, J. A. A. W. Elemans, A. E. Rowan
and R. J. M. Nolte, Chem. Soc. Rev., 2014, 43, 99; (d) P. Ceroni,
A. Credi and M. Venturi, Chem. Soc. Rev., 2014, 43, 4068.
5 (a) F. M. Raymo and S. Giordani, Org. Lett., 2001, 3, 3475; (b) S. Silvi,
E. C. Constable, C. E. Housecroft, J. E. Beves, E. L. Dunphy,
M. Tomasulo, F. M. Raymo and A. Credi, Chem. – Eur. J., 2009,
15, 178.
6 (a) S. Silvi, A. Arduini, A. Pochini, A. Secchi, M. Tomasulo,
F. M. Raymo, M. Baroncini and A. Credi, J. Am. Chem. Soc., 2007,
129, 13378; (b) H. Kai, S. Nara, K. Kinbara and T. Aida, J. Am. Chem.
Soc., 2008, 130, 6725; (c) D. Ray, J. T. Foy, R. P. Hughes and
I. Aprahamian, Nat. Chem., 2012, 4, 757; (d) S. Pramanik, S. De
and M. Schmittel, Angew. Chem., Int. Ed., 2014, 53, 4709.
7 M. L. Saha, S. De, S. Pramanik and M. Schmittel, Chem. Soc. Rev.,
2013, 42, 6860.
the UV-Vis spectrum (Fig. 2b, black - red trace). Subsequently,
the mixture was reacted with one more equivalent of TBPA+
ꢀ
SbCl6ꢁ to oxidise [Cu(2)]+, which triggered Cu2+ translocation as
seen from ESI-MS signals at m/z = 1093.4 and 938.6 Da for 1+
and [Cu(3)]2+, respectively (Fig. 3c). Despite the reorganisation at both
nanoswitches 2 and 3, the amount of N - zinc(II) porphyrin
coordination remains in essence constant (Fig. 2b, red - green
trace). The backward process was initiated by adding one equiv. of
dmfc as a reducing agent, which, however, should reduce 1+ and not
[Cu(3)]2+ by oxidation potential considerations. Indeed, no reorganisa-
tion of the arm and thus no severe changes in the UV-Vis spectrum
were observed (Fig. 2b, green - blue trace). Finally, after treatment
with one additional equivalent of dmfc to reduce [Cu(3)]2+, Cu+
translocation from [Cu(3)]+ to 1 generated [Cu(1)]+ as demonstrated
by the ESI-MS spectrum (Fig. 3d). Diagnostically, the process was
accompanied by a large nanomechanical reorganisation of the
moving arm as evidenced from UV-Vis data at the Q band (Fig. 2b,
blue - cyano trace). Thus, the trio of nanoswitches has been reset to
its initial position after two oxidation and two reduction steps.
Herein, we establish an unprecedented two-step communication
cascade between three nanoswitches by programming both metal
ion and ligand binding properties depending on their redox states
(self-sorting). Ligand oxidation in [Cu(1)]+ at E1/2 = 610 mVSCE
triggered the release of Cu+ acting as an input signal for the
8 M. L. Saha, S. Neogi and M. Schmittel, Dalton Trans., 2014,
43, 3815.
9 J.-P. Sauvage, Acc. Chem. Res., 1998, 31, 611.
´
10 (a) M. M. Safont-Sempere, G. Fernandez and F. Wu¨rthner, Chem.
Rev., 2011, 111, 5784; (b) M. L. Saha and M. Schmittel, Org. Biomol.
Chem., 2012, 10, 4651.
next switch. Upon second one-electron oxidation at [Cu(2)]+ (E1/2
=
11 S. Kume and H. Nishihara, Chem. Commun., 2011, 47, 415.
12 (a) M. Schmittel, S. De and S. Pramanik, Angew. Chem., Int. Ed., 2012,
51, 3832; (b) M. Schmittel, S. Pramanik and S. De, Chem. Commun.,
2012, 48, 11730; (c) S. De, S. Pramanik and M. Schmittel, Dalton
Trans., 2014, 43, 10977.
750 mVSCE),6d translocation of Cu2+ changed the switching state of
3 - [Cu(3)]2+. A two-electron reduction reversed the system to its
initial state. Thus, this example not only introduces multistep
communication in systems chemistry14 but also advances the inter-
connection of molecular gates and machinery.
13 3-(11-Bromoundecyl)-1,10-biferrocenylene is used in this study
as a reductant. E1/2(BFD) = 0.09 VSCE and E1/2(BFD+ꢀ) = 0.76
VSCE (see (a) R. Breuer and M. Schmittel, Organometallics, 2012,
31, 6642; (b) R. Breuer and M. Schmittel, Organometallics, 2013,
32, 5980).
¨
We are grateful to the DFG (Schm 647/19-1) and the Universitat
Siegen for financial support as well as to Kun Chen for the biferro-
cenylene BFD and Dr T. Paululat for NMR measurements.
14 J. R. Nitschke, Nature, 2009, 462, 736.
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun., 2014, 50, 13254--13257 | 13257