T. Hansen et al. / European Journal of Medicinal Chemistry 58 (2012) 22e29
29
[6] V. Tørfoss, D. Ausbacher, T. Hansen, B.-O. Brandsdal, M. Havelkova, M.B. Strøm,
[23] M.B. Strøm, B.E. Haug, M.L. Skar, W. Stensen, T. Stiberg, J.S. Svendsen, The
pharmacophore of short cationic antibacterial peptides, J. Med. Chem. 46
(2003) 1567e1570.
Synthesis of anticancer heptapeptides containing a unique lipophilic b
2,2-amino
acid building block, J. Pept. Sci. 18 (2012) 170e176.
[7] V. Tørfoss, J. Isaksson, D. Ausbacher, B.-O. Brandsdal, G.E. Flaten, T. Anderssen,
C.d.A. Cavalcanti-Jacobsen, M. Havelkova, L.T. Nguyen, H.J. Vogel, M.B. Strøm,
Improved anticancer potency by head-to-tail cyclization of short cationic
[24] T. Hansen, M.K. Moe, T. Anderssen, M.B. Strøm, Metabolism of small antimi-
crobial b
2,2-amino acid derivatives by murine liver microsomes, Eur. J. Drug
Metab. Pharmacokinet. (2012).
anticancer peptides containing a lipophilic
b
2,2-amino acid, J. Pept. Sci. 18
[25] S.R. Dennison, M. Whittaker, F. Harris, D.A. Phoenix, Anticancer alpha-helical
peptides and structure/function relationships underpinning their interactions
with tumour cell membranes, Curr. Protein Pept. Sci. 7 (2006) 487e499.
[26] L.T. Eliassen, B.E. Haug, G. Berge, Ø. Rekdal, Enhanced antitumour activity
of 15-residue bovine lactoferricin derivatives containing bulky aromatic
amino acids and lipophilic N-terminal modifications, J. Pept. Sci. 9 (2003)
510e517.
(2012) 609e619.
[8] L.T. Eliassen, G. Berge, B. Sveinbjørnsson, J.S. Svendsen, L.H. Vorland, Ø. Rekdal,
Evidence for a direct antitumor mechanism of action of bovine lactoferricin,
Anticancer Res. 22 (2002) 2703e2710.
[9] N. Papo, D. Seger, A. Makovitzki, V. Kalchenko, Z. Eshhar, H. Degani, Y. Shai,
Inhibition of tumor growth and elimination of multiple metastases in human
prostate and breast xenografts by systemic inoculation of a host defense-like
lytic peptide, Cancer Res. 66 (2006) 5371e5378.
[27] Y. Shai, D. Avrahami, Antimicrobial and anticancer lipopeptides,
WO2004110341 (A3) (2005).
[10] R.F.A. Zwaal, P. Comfurius, E.M. Bevers, Surface exposure of phosphati-
dylserine in pathological cells, Cell. Mol. Life Sci. 62 (2005) 971e988.
[11] N. Papo, Y. Shai, New lytic peptides based on the D, L-amphipathic helix motif
[28] D. Avrahami, Y. Shai, A new group of antifungal and antibacterial lipopeptides
derived from non-membrane active peptides conjugated to palmitic acid,
J. Biol. Chem. 279 (2004) 12277e12285.
preferentially kill tumor cells compared to normal cells, Biochemistry 42
(2003) 9346e9354.
[29] D. Ausbacher, G. Svineng, T. Hansen, M.B. Strøm, Anticancer mechanisms of
action of two small amphipathic
b
2,2-amino acid derivatives derived from
[12] Y.J. Kim, A. Varki, Perspectives on the significance of altered glycosylation of
glycoproteins in cancer, Glycoconj. J. 14 (1997) 569e576.
[13] W.H. Yoon, H.D. Park, K. Lim, B.D. Hwang, Effect of O-glycosylated mucin on
invasion and metastasis of HM7 human colon cancer cells, Biochem. Biophys.
Res. Commun. 222 (1996) 694e699.
antimicrobial peptides, BBA-Biomembr. 1818 (2012) 2917e2925.
[30] H.J. Vogel, D.J. Schibli, W. Jing, E.M. Lohmeier-Vogel, R.F. Epand, R.M. Epand,
Towards a structure-function analysis of bovine lactoferricin and related
tryptophan- and arginine-containing peptides, Biochem. Cell. Biol. 80 (2002)
49e63.
[14] M.D. Burdick, A. Harris, C.J. Reid, T. Iwamura, M.A. Hollingsworth, Oligosac-
charides expressed on MUC1 produced by pancreatic and colon tumor cell
lines, J. Biol. Chem. 272 (1997) 24198e24202.
[31] Z. Liu, A. Brady, A. Young, B. Rasimick, K. Chen, C. Zhou, N.R. Kallenbach,
Length effects in antimicrobial peptides of the (RW)n series, Antimicrob.
Agents Chemother. 51 (2007) 597e603.
[15] J.S. Mader, D.W. Hoskin, Cationic antimicrobial peptides as novel cytotoxic
agents for cancer treatment, Expert Opin. Investig. Drugs 15 (2006) 933e946.
[16] L.T. Eliassen, G. Berge, A. Leknessund, M. Wikman, I. Lindin, C. Løkke, F. Ponthan,
J.I. Johnsen, B. Sveinbjørnsson, P. Kogner, T. Flegstad, Ø. Rekdal, The antimi-
crobial peptide, lactoferricin B, is cytotoxic to neuroblastoma cells in vitro and
inhibits xenograft growth in vivo, Int. J. Cancer 119 (2006) 493e500.
[17] G. Berge, L.T. Eliassen, K.A. Camilio, K. Bartnes, B. Sveinbjornsson, Ø. Rekdal,
Therapeutic vaccination against a murine lymphoma by intratumoral injec-
tion of a cationic anticancer peptide, Cancer Immunol. Immunother. 59 (2010)
1285e1294.
[32] N. Papo, Y. Shai, Host defense peptides as new weapons in cancer treatment,
Cell. Mol. Life Sci. 62 (2005) 784e790.
[33] M.M. Fuster, J.D. Esko, The sweet and sour of cancer: glycans as novel ther-
apeutic targets, Nat. Rev. Cancer 5 (2005) 526e542.
[34] R.E. Hancock, M.G. Scott, The role of antimicrobial peptides in animal
defenses, Proc. Natl. Acad. Sci. U. S. A. 97 (2000) 8856e8861.
[35] Y. Ishitsuka, L. Arnt, J. Majewski, S. Frey, M. Ratajczek, K. Kjaer, G.N. Tew,
K.Y. Lee, Amphiphilic poly(phenyleneethynylene)s can mimic antimicrobial
peptide membrane disordering effect by membrane insertion, J. Am. Chem.
Soc. 128 (2006) 13123e13129.
[18] G.P. Dunn, A.T. Bruce, H. Ikeda, L.J. Old, R.D. Schreiber, Cancer immunoediting:
from immunosurveillance to tumor escape, Nat. Immunol. 3 (2002) 991e998.
[19] R. Perez-Tomas, Multidrug resistance: retrospect and prospects in anti-cancer
drug treatment, Curr. Med. Chem. 13 (2006) 1859e1876.
[20] A. Garnier-Suillerot, C. Marbeuf-Gueye, M. Salerno, C. Loetchutinat, I. Fokt,
M. Krawczyk, T. Kowalczyk, W. Priebe, Analysis of drug transport kinetics in
multidrug-resistant cells: implications for drug action, Curr. Med. Chem. 8
(2001) 51e64.
[36] K. Nusslein, L. Arnt, J. Rennie, C. Owens, G.N. Tew, Broad-spectrum antibac-
terial activity by a novel abiogenic peptide mimic, Microbiology 152 (2006)
1913e1918.
[37] G.N. Tew, D. Clements, H. Tang, L. Arnt, R.W. Scott, Antimicrobial activity of an
abiotic host defense peptide mimic, BBA-Biomembr. 1758 (2006) 1387e1392.
[38] A. Makovitzki, J. Baram, Y. Shai, Antimicrobial lipopolypeptides composed of
palmitoyl di- and tricationic peptides: in vitro and in vivo activities, self-
assembly to nanostructures, and a plausible mode of action, Biochemistry
47 (2008) 10630e10636.
[21] T. Hansen, T. Alst, M. Havelkova, M.B. Strøm, Antimicrobial activity of small b-
peptidomimetics based on the pharmacophore model of short cationic anti-
microbial peptides, J. Med. Chem. 53 (2010) 595e606.
[39] Y. Shai, Mode of action of membrane active antimicrobial peptides, Biopoly-
mers (Pept. Sci.) 66 (2002) 236e248.
[22] T. Hansen, D. Ausbacher, G.E. Flaten, M. Havelkova, M.B. Strøm, Synthesis of
[40] T. Mosmann, Rapid colorimetric assay for cellular growth and survival:
application to proliferation and cytotoxicity assays, J. Immunol. Methods 65
(1983) 55e63.
cationic antimicrobial
administration, J. Med. Chem. 54 (2011) 858e868.
b
2,2-amino acid derivatives with potential for oral