ACS Medicinal Chemistry Letters
Letter
(16) Peters, W.; Robinson, B. L.; Rossier, J. C.; Misra, D.; Jefford, C.
W.; Rossiter, J. C. The chemotherapy of rodent malaria. XLIX. The
activities of some synthetic 1,2,4-trioxanes against chloroquine-
sensitive and chloroquine-resistant parasites. Part 2: Structure-activity
studies on cis-fused cyclopenteno-1,2,4-trioxanes (fenozans) against
drug-sensitive and drug-resistant lines of Plasmodium berghei and P.
yoelii ssp. NS in vivo. Ann. Trop. Med. Parasitol 1993, 87, 9−16.
(17) Peters, W.; Robinson, B. L.; Tovey, G.; Rossier, J. C.; Jefford, C.
W. The chemotherapy of rodent malaria. L. The activities of some
synthetic 1,2,4-trioxanes against chloroquine- sensitive and chlor-
oquine-resistant parasites. Part 3: Observations on 'Fenozan-50F', a
difluorinated 3,3′-spirocyclopentane 1,2,4- trioxane. Ann. Trop. Med.
Parasitol. 1993, 87, 111−123.
(18) Kepler, J. A.; Philip, A.; Lee, Y. W.; Morey, M. C.; Carroll, F. I.
1,2,4-Trioxanes as potential antimalarial agents. J. Med. Chem. 1988,
31, 713−716.
(19) Posner, G. H.; Maxwell, J. P.; O'Dowd, H.; Krasavin, M.; Xie, S.;
Shapiro, T. A. Antimalarial sulfide, sulfone, and sulfonamide trioxanes.
Bioorg. Med. Chem. 2000, 8, 1361−1370.
(20) Posner, G. H.; Jeon, H. B.; Parker, M. H.; Krasavin, M.; Paik, I.-
H.; Shapiro, T. A. Antimalarial simplified 3-aryltrioxanes: Synthesis
and preclinical efficacy/toxicity testing in rodents. J. Med. Chem. 2001,
44, 3054−3058.
(21) Posner, G. H.; Jeon, H. B.; Polypradith, P.; Paik, I.-H.; Borstnik,
K.; Xie, S.; Shapiro, T. A. Orally active, water-soluble antimalarial 3-
aryltrioxanes: Short synthesis and preclinical efficacy testing in rodents.
J. Med. Chem. 2002, 45, 3824−3828.
(22) O'Neill, P. M.; Mukhtar, A.; Ward, S. A.; Bickley, J. F.; Davies, J.;
Bachi, M. D.; Stocks, P. A. Application of thiol-olefin cooxygenation
methodology to a new synthesis of the 1,2,4-trioxane pharmacophore.
Org. Lett. 2004, 6, 3035−3038.
(23) Cabaret, O. D.; Vical, F. B.; Loup, C.; Robert, A.; Gornitzka, H.;
bonhoure, A.; Vial, H.; Magnaval, J. F.; Seguela, J- P.; Meunier, B.
Synthesis and antimalarial activity of trioxaquines derivatives. Chem.
Eur. J. 2004, 10, 1625−1636.
(33) Griesbeck, A. G.; El-Idreesy, T. T.; Hoinck, L.-O.; Lex, J.; Brun,
̈
R. Novel spiroanellated 1,2,4-trioxanes with high in vitro antimalarial
activities. Bioorg. Med. Chem. Lett. 2005, 15, 595−597.
́
(34) Sabbani, S.; Pensee, L. L.; Bacsa, J.; Hedenstrom, E.; O'Neill, P.
̈
M. Diastereoselective schenck ene reaction of singlet oxygen with
chiral allylic alcohols; access to enantiomerically enriched 1,2,4-
trioxanes. Tetrahedron 2009, 65, 8531−8537.
(35) Hu, Z.; Liu, J.; Li, G.; Dong, Z.; Li, W. Synthesis of Asymmetric
Triarylbenzenes by Using SOCl2-C2H5OH Reagent. J. Chin. Chem. Soc.
2004, 51, 581−584.
(36) Arai, N.; Azuma, K.; Nii, N.; Ohkuma, T. Highly
Enantioselective Hydrogenation of Aryl Vinyl Ketones to Allylic
Alcohols Catalyzed by the Tol-Binap/Dmapen Ruthenium (II)
Complex. Angew. Chem., Int. Ed. 2008, 47, 7457−7460.
(37) Peter's procedure: 100% suppression of parasitaemia means that
the number of parasites, if at all present, is below the detection limit.
The parasites present below the detection limit can multiply and
eventually can be detected. In such cases, although the drug is
providing near 100% suppression of the parasitemia, it will not provide
full protection to the treated mice. Multidrug-resistant P. yoelii
nigeriensis used in this study is resistant to chloroquine, mefloquine,
and halofantrine.
(38) One hundred percent protection means that all of the treated
mice survive till day 28. Similarly, 60% protection means only 60% of
the treated survive till day 28.
(39) Singh, C.; Misra, D.; Saxena, G.; Chandra, S. In vivo potent
antimalarial 1,2,4-trioxanes: synthesis and activity of 8-(α-arylvinyl)-
6,7,10-trioxaspiro[4,5]decanes and 3-(α-arylvinyl)-1,2,5-trioxaspiro-
[5,5]undecanes against Plasmodium berghei in mice. Bioorg. Med.
Chem. Lett. 1995, 5, 1913−1916.
(40) Ku, M. S. Use of the Biopharmaceutical Classification System in
Early Drug Development. AAPS J. 2008, 10, 208−212.
(41) Medicines For Malaria Venture (MMV). MMV Compound
Progression Criteria; August, 2008; 8 pp.
(42) Bosman, A.; Malaria, R. B. Review of Application for Inclusion of a
(24) Slack, R. D.; Jacobine, A. M.; Gary, G. H. Antimalarial
peroxides: Advances in drug discovery and design. Med. Chem.
Commun. 2012, 3, 281−297.
(25) Singh, C.; Malik, H.; Puri, S. K. Orally Active 1, 2, 4-Trioxanes:
Synthesis and Antimalarial Assessment of a New Series of 9-
Functionalized 3-(1-Arylvinyl)-1,2,5-trioxaspiro[5.5]undecanes against
Multi-Drug-Resistant Plasmodium yoelii nigeriensis in Mice. J. Med.
Chem. 2006, 49, 2794−2803.
(43) Grace, J. M.; Aguilar, A. J.; Trotman, K. M.; Brewer, T. G.
Metabolism of β-arteether to dihydroqinghaosu by human liver
microsomes and recombinant cytochrome P450. Drug Metab. Dispos.
1998, 26 (4), 313−317.
(26) Singh, C.; Verma, V. P.; Naikade, N. K.; Singh, A. S.; Hassam,
M.; Puri, S. K. Novel Bis- and Tris-1,2,4-trioxanes: Synthesis and
Antimalarial Activity against Multidrug-Resistant Plasmodium yoelii in
Swiss Mice. J. Med. Chem. 2008, 51, 7581−7592.
(27) Singh, C.; Gupta, N.; Puri, S. K. Synthesis of new 6-alkylvinyl/
arylalkylvinyl substituted 1,2,4-trioxanes active against multidrug-
resistant malaria in mice. Bioorg. Med. Chem. 2004, 12, 5553−5562.
(28) Singh, C.; Malik, H.; Puri, S. K. Orally active amino
functionalized antimalarial 1,2,4-trioxanes. Bioorg. Med. Chem. Lett.
2004, 14, 459−462.
(29) Singh, C.; Kanchan, R.; Srivastava, D.; Puri, S. K. 8-(1-
Naphthalen-2-yl-vinyl)-6,7,10-trioxaspiro (4.5) decane, a new 1,2,4-
trioxane effective against rodent and simian malaria. Bioorg. Med.
Chem. Lett. 2006, 16, 584−586.
(30) Singh, C.; Hassam, M.; Naikade, N. K.; Verma, V. P.; Singh, A.
S.; Puri, S. K. Synthesis and Antimalarial Assessment of a New Series
of Orally Active Amino-Functionalized Spiro 1,2,4-Trioxanes. J. Med.
Chem. 2010, 53, 7587−7598.
(31) Griesbeck, A. G.; El-Idreesy, T. T.; Fiege, M.; Brun, R. Synthesis
of Antimalarial 1,2,4-Trioxanes via Photooxygenation of a chiral allylic
alcohol. Org. Lett. 2002, 4, 4193−4195.
(32) Griesbeck, A. G.; El-Idreesy, T. T.; Lex, J. Singlet oxygen
addition to chiral allylic alcohols and subsequent peroxyacetalization
with β-naphthaldehyde: Synthesis of diastereomerically pure 3-β-
naphthyl-substituted 1,2,4-trioxanes. Tetrahedron 2006, 62, 10615−
10622.
E
dx.doi.org/10.1021/ml300188t | ACS Med. Chem. Lett. XXXX, XXX, XXX−XXX