G. N. Reddy, P. R. Likhar
Based on the experimental results, a plausible mechanism for the ammonium
acetate-catalyzed condensation for formation of derivatives 3 is proposed in
Scheme 1. Initially, ammonium acetate condensation between 1,3-dione 1 and a-
bromoacetophenones 2 would give intermediate 4. Later, displacement of bromine
would furnish intermediate 5, which underwent aromatization to give product 3.
In conclusion, an efficient, environmentally friendly, and simple procedure for
condensation of 1,3-diketones, a-bromoacetophenones, and ammonium acetate to
synthesize trisubstituted pyrroles in ionic liquid is reported. Mild reaction
conditions, operational simplicity, higher yields (55–85 %), short reaction time,
cheap starting materials, and environmental friendliness are notable features of this
procedure. Meanwhile, ionic liquid [bmim]BF4 could be reused in up to five cycles
without much loss of activity. The methodology opens a new green route to
synthesis of trisubstituted pyrrole derivatives with simple workup.
Supplementary data
Experimental details, characterization data, and 1H and 13C NMR spectra of
References
1. P. Novak, K. Muller, S.V. Santhanam, O. Hass, Chem. Rev. 97, 207 (1997)
2. S. Gabriel, M. Cecius, K. Fleury-Frenette, D. Cossement, M. Hecq, N. Ruth, R. Jerome, C. Jerome,
Chem. Mater. 19, 2364 (2007)
3. R.J Sundburg, in Comprehensive Heterocyclic Chemistry II, ed by A.R. Katritzky, C.W. Rees, E.F.V.
Scriven (Pergamon, Oxford, 1996), vol 2, p. 119
4. H. Fan, J. Peng, M.T. Hamann, J.F. Hu, Chem. Rev. 108, 264 (2008)
5. L. Zeng, E.W. Miller, A. Pralle, E.Y. Isacoff, C.J. Chang, J. Am. Chem. Soc. 128, 10 (2006)
6. G. La Regina, R. Silvestri, M. Artico, A. Lavecchia, E. Novellino, O. Befani, P. Turini, E. Agos-
tinelli, J. Med. Chem. 50, 922 (2007)
7. B.R. Clark, R.J. Capon, E. Lacey, S. Tennant, J.H. Gill, Org. Lett. 8, 701 (2006)
8. L. Knorr, Dtsch. B. Chem. Ges. 17, 1635 (1884)
9. C. Paal, Dtsch. B. Chem. Ges. 18, 367 (1885)
10. A. Hantzsch, Dtsch. B. Chem. Ges. 23, 1474 (1890)
11. H. Rao, S.P. Rao, A.V. Bhadra, S. Sivakumar, Synth. Commun. 45, 2712 (2015)
12. K.P. Hanuman, V.S. Kamlesh, M. Kaliyappan, C.C. Atul, New J. Chem. 39, 4631 (2015)
13. H.M. Lokman, Y. Fei, Z. Yan, W. Jianbo, Tetrahedron 70, 6957 (2014)
14. L. Jihui, N. Luc, Org. Lett. 15, 6124 (2013)
15. L. Ende, X. Cheng, W. Chengyu, S. Xia, L. Yanzhong, RSC Adv. 3, 22872 (2013)
16. B.V.S. Reddy, M.R. Reddy, Y.G. Rao, J.S. Yadav, B. Sridhar, Org. Lett. 15, 464 (2013)
17. Z. Qingwei, H. Ruimao, Tetrahedron Lett. 51, 4512 (2010)
18. S.G. Chandru, W.-P. Hu, A.M. Garkhedkar, S.S.K. Boominathan, J.-J. Wang, Chem. Commun. 51,
13795 (2015)
19. X.-L. Lian, Z.-H. Ren, Y.-Y. Wang, Z.-H. Guan, Org. Lett. 16, 3360 (2014)
20. L. Jianquan, F. Zhongxue, Z. Qian, L. Qun, B. Xihe, Angew. Chem. Int. Ed. 52, 6953 (2013)
21. R.J. Billedeau, K.R. Klein, D. Kaplan, Y. Lou, Org. Lett. 15, 1421 (2013)
22. Y.-Q. Zhang, D.-Y. Zhu, B.-S. Li, Y.-Q. Tu, J.-X. Liu, Y. Lu, S.-H. Wang, J. Org. Chem. 77, 4167
(2012)
123