Paper
RSC Advances
Tellurium in Organic Synthesis, A. R. Katritzky, O. Meth-
Cohn and C. W. Rees, ed.; Academic Press: San Diego,
1994.
2 (a) G. Mugesh, W. W. duMont and H. Sies, Chem. Rev.,
2001, 101, 2125; (b) C. W. Nogueira, G. Zeni and J. B.
T. Rocha, Chem. Rev., 2004, 104, 6255.
3 (a) Y. Okamoto, in The Chemistry Of Organic Selenium and
Tellurium Compounds, ed. S. Patai and Z. Rappoport, Wiley,
Chichester, U. K., 1986, 1, 10; (b) J. Hellberg, T. Remonen,
M. Johansson, O. Inganas, M. Theander, L. Engman and
P. Eriksson, Synth. Met., 1997, 84, 251; (c) T. Ando, T.
S. Kwon, A. Kitagawa, T. Tanemura, S. Kondo, H. Kunisada
and Y. Yuki, Macromol. Chem. Phys., 1996, 197, 2803.
4 (a) T. Kondo and T. Mitsudo, Chem. Rev., 2000, 100, 3205;
(b) S. V. Ley and A. W. Thomas, Angew. Chem., Int. Ed.,
2003, 42, 5400.
Methyl(2-(phenyltellanyl)phenyl)sulfane (Table 2, entry 10)
1
Yellow liquid; IR (neat) 3049, 2916,1562, 1433 cm21; H NMR
(500 MHz, CDCl3) d 2.42 (s, 3H), 6.84 (t, J = 8.0 Hz, 1H), 6.96 (d,
J = 7.5 Hz, 1H), 7.07 (t, J = 7.5 Hz, 1H), 7.12–7.24 (m, 3H), 7.31
(t, J = 7.5 Hz, 2H), 7.79 (d, J = 8.0 Hz, 1H); 13C NMR (125 MHz,
CDCl3) d 19.3, 115.0, 124.5, 127.8, 128.8, 129.9 (2C), 130.1,
134.3 (2C), 140.5, 140.7; anal calc. for C13H12STe: C 47.62, H
3.69; found: C 47.45, H 3.72%.
3-Phenyltellanyl-thiophene (Table 2, entry 18)
1
Yellow liquid; IR (neat) 3064, 2989, 1573, 1473 cm21; H NMR
(500 MHz, CDCl3) d 7.19–7.31 (m, 5H), 7.59–7.62 (m, 3H); 13C
NMR (125 MHz, CDCl3) 104.0, 115.4, 127.3, 127.9, 129.5 (2C),
134.6, 136.6 (2C), 136.9; anal calc. for C10H8STe: C 41.73, H
2.80; found: C 41.66, H 2.92%.
5 (a) Y. Nishiyama, K. Tokunaga and N. Sonoda, Org. Lett.,
1999, 1, 1725; (b) T. Itoh and T. Mase, Org. Lett., 2004, 6,
4587; (c) D. Barranano and J. F. Hartwig, J. Am. Chem. Soc.,
1995, 117, 2937.
6 (a) K. Takagi, Chem. Lett., 1987, 2221; (b) H. J. Cristau,
B. Chaband, A. Chene and H. Christol, Synthesis, 1981, 892.
7 (a) R. K. Gujadhur and D. Venkataraman, Tetrahedron Lett.,
2003, 44, 81; (b) H. Suzuki, H. Abe and A. Osuka, Chem.
Lett., 1981, 151; (c) F. Y. Kwong and S. L. Buchwald, Org.
Lett., 2002, 4, 3517.
8 (a) D. Sing, E. E. Alberto, O. E. D. Rodrigues and A.
L. Braga, Green Chem., 2009, 11, 1521; (b) N. Taniguchi, J.
Org. Chem., 2004, 69, 6904; (c) S. Bhadra, A. Saha and B.
C. Ranu, J. Org. Chem., 2010, 75, 4864 and references cited
therein; (d) H. Wang, L. Jiang, T. Chen and Y. Li, Eur. J. Org.
Chem., 2010, 2324.
9 N. Miyayura, Bull. Chem. Soc. Jpn., 2008, 81, 1535.
10 (a) M. Wang, K. Ren and L. Wang, Adv. Synth. Catal., 2009,
351, 1586; (b) V. G. Ricordi, C. S. Freitas, G. Perin, E.
J. Lenardao, R. G. Jacob, L. Savegnago and D. Alves, Green
Chem., 2012, 14, 1030; (c) D. Alves, C. G. Santos, M.
W. Paixao, L. C. Soares, D. de Souza, O. E. D. Rodrigues and
A. L. Braga, Tetrahedron Lett., 2009, 50, 6635; (d) K. Ren,
M. Wang and L. Wang, Org. Biomol. Chem., 2009, 7, 4858;
(e) N. Taniguchi, J. Org. Chem., 2007, 72, 1241; (f) K. H.
V. Reddy, B. Satish, K. Ramesh, K. Karnakar and Y. V.
D. Nageswar, Chem. Lett., 2012, 41, 585.
Procedure for recyclability of catalyst
After completion of the reaction the magnetic bar covered with
the used catalyst was collected by a magnetic rod and the bar
was successively washed with ethanol and acetone before
being poured into another reaction pot for the next cycle of
reaction.
4. Conclusion
In conclusion, we have developed an efficient procedure for
the synthesis of organotellurides and selenides by the reaction
of boronic acid/boronic ester/trifluoroborate with diphenyl
ditelluride/diselenide catalysed by CuFe2O4 nanoparticles in
PEG-400 in the presence of a small amount of DMSO as an
additive. The simplicity in operation, general applicability to
various types of boronic acids including heteroaryl, alkynyl,
alkenyl and particularly alkyl boronic acids which were
reported to be inactive,10a,10d and wide scope of the functio-
nalization make this protocol more attractive than the existing
ones. In addition, recyclability of the catalyst for eight runs,
use of PEG-400 as the reaction medium and high yields of
products in a relatively short period make this procedure
greener and more cost effective. We believe, this will provide a
practical solution to the synthesis of difficult to access
organotellurides and selenides.
11 D. Kundu, S. Ahammed and B. C. Ranu, Green Chem., 2012,
14, 2024.
12 (a) K. Swapna, S. N. Murthy, T. M. Jyoti and Y. V.
D. Nageswar, Org. Biomol. Chem., 2011, 9, 5989; (b)
N. Panda, A. K. Jena and S. Mahapatra, Appl. Catal., A,
2012, 433, 258; (c) R. Zhang, J. Liu, S. Wang, I. Niu, P. Xia
and W. Sun, ChemCatChem, 2011, 3, 146.
13 (a) H. Xu, Y. Wang, Z. Wang, J. Liu, S. Mario and D. Wim,
Chin. Sci. Bull., 2006, 51, 2315; (b) U. Jkilgore, J. A. Karly,
M. Pink, X. Gao and D. J. Mindola, Angew. Chem., Int. Ed.,
2009, 48, 2394.
Acknowledgements
We are pleased to acknowledge the financial support from
DST, New Delhi under J. C. Bose Fellowship grant (SR/S2/JCB-
11/2008) to B. C. Ranu. DK thanks CSIR, New Delhi for his
fellowship. We acknowledge support of Nanoscience Project
Unit at IACS, funded by DST, New Delhi.
14 (a) Y. Mitsuhiro and F. Hataaka, Chem. Pharm. Bull., 2004,
52, 248; (b) J. V. Comasseto, W. L. Ling, N. Pelnagnani and
H. A. Stefani, Synthesis, 1997, 373.
15 (a) E. A. Okoronkwo, R. A. Rosario, D. Alves, L. Sawegnago,
W. C. Noguerina and G. Zeni, Tetrahedron Lett., 2008, 49,
3252; (b) E. A. Okoronkwo, B. Godoi, F. R. Schumacher, S.
References
1 (a) C. Paulmier, in Selenium Reagents and Intermediates in
Organic Synthesis, Organic Chemistry Series 4; J. E. Baldwin,
Ed.; Pergamon Press Ltd.: Oxford, 1986; (b) N. Petragnani,
124 | RSC Adv., 2013, 3, 117–125
This journal is ß The Royal Society of Chemistry 2013