The Influence of Arylene and Alkylene Units
[5]
[6]
a) I. Karatchevtseva, D. J. Cassidy, M. Wong Chi Man,
D. R. G. Mitchell, J. V. Hanna, C. Carcel, C. Bied, J. J. E. Mo-
reau, J. R. Bartlett, Adv. Funct. Mater. 2007, 17, 3926–3932; b)
J. Graffion, A. M. Cojocariu, X. Cattoen, R. A. S. Ferreira,
V. R. Fernandes, P. S. Andre, L. D. Carlos, M. Wong Chi Man,
J. R. Bartlett, J. Mater. Chem. 2012, 22, 13279–13285.
a) A. Zamboulis, N. Moitra, J. J. E. Moreau, X. Cattoën, M.
Wong Chi Man, J. Mater. Chem. 2010, 20, 9322–9338; b) A.
Monge-Marcet, R. Pleixats, X. Cattoën, M. Wong Chi Man,
Catal. Sci. Technol. 2011, 1, 1544–1563; c) X. Elias, R. Pleixats,
M. Wong Chi Man, J. J. E. Moreau, Adv. Synth. Catal. 2006,
348, 751–762; d) S. S. Nobre, X. Cattoën, R. A. S. Ferreira, M.
Wong Chi Man, L. D. Carlos, Phys. Status Solidi RRL 2010, 4,
55–57; e) J. Graffion, X. Cattoën, V. Freitas, R. A. S. Ferreira,
M. Wong Chi Man, L. D. Carlos, J. Mater. Chem. 2012, 22,
6711–6715; f) L. Fertier, C. Théron, C. Carcel, P. Trens, M.
Wong Chi Man, Chem. Mater. 2011, 23, 2100–2106.
a) X. Sallenave, O. J. Dautel, G. Wantz, P. Valvin, J. P. Lère-
Porte, J. J. E. Moreau, Adv. Funct. Mater. 2009, 19, 404–410;
b) E. Besson, A. Mehdi, A. Van der Lee, H. Chollet, C. Réyé,
R. Guilard, R. J. P. Corriu, Chem. Eur. J. 2010, 16, 10226–
10233; c) N. Mizoshita, T. Tani, S. Inagaki, Chem. Soc. Rev.
2011, 40, 789–800; d) N. Mizoshita, T. Tani, H. Shinokubo, S.
Inagaki, Angew. Chem. Int. Ed. 2012, 51, 1156–1160.
a) S. Fujita, S. Inagaki, Chem. Mater. 2008, 20, 891–908; b) T.
Asefa, M. J. MacLachlan, N. Coombs, G. A. Ozin, Nature
1999, 402, 867–871; c) B. J. Melde, B. T. Holland, C. F. Blan-
ford, A. Stein, Chem. Mater. 1999, 11, 3302–3308; d) A. Sayari,
S. Hamoudi, Y. Yang, I. L. Moudrakovski, J. R. Ripmeester,
Chem. Mater. 2000, 12, 3857–3863; e) S. Inagaki, S. Guan, T.
Ohsuna, O. Terasaki, Nature 2002, 416, 304–307.
a) B. Boury, R. J. P. Corriu, V. Le Strat, P. Delord, M. Nobili,
Angew. Chem. 1999, 111, 3366; Angew. Chem. Int. Ed. 1999,
38, 3172–3175; b) B. Boury, R. J. P. Corriu, Chem. Commun.
2002, 795–802; c) G. Cerveau, C. Chorro, R. Corriu, C. Lepey-
tre, J. P. Lere-Porte, J. J. E. Moreau, P. Thépot, M.
Wong Chi Man in Hybrid Organic–Inorganic Composites (Eds.:
J. E. Mark, C. Y. C. Lee, P. A. Bianconi), ACS Symposium
Series 585, American Chemical Society, Washington, DC,
1995, pp. 210–225.
a) J. J. E. Moreau, L. Vellutini, M. Wong Chi Man, C. Bied, J.
Am. Chem. Soc. 2001, 123, 1509–1510; b) J. J. E. Moreau, L.
Vellutini, M. Wong Chi Man, C. Bied, J. L. Bantignies, P. Dieu-
donné, J. L. Sauvajol, J. Am. Chem. Soc. 2001, 123, 7957–7958;
c) J. J. E. Moreau, L. Vellutini, M. Wong Chi Man, C. Bied, P.
Dieudonné, J. L. Bantignies, J. L. Sauvajol, Chem. Eur. J. 2005,
11, 1527–1537; d) T. Kishida, N. Fujita, K. Sada, S. Shinkai,
J. Am. Chem. Soc. 2005, 127, 7298–7299; e) K. J. C. van Bom-
mel, A. Friggeri, S. Shinkai, Angew. Chem. 2003, 115, 1010;
Angew. Chem. Int. Ed. 2003, 42, 980–999; f) C. Y. Bao, R. Lu,
M. Jin, P. C. Xue, C. H. Tan, T. H. Xu, G. F. Liu, Y. Y. Zhao,
J. Nanosci. Nanotechnol. 2006, 6, 2560–2565; g) X. Zhou, S.
Yang, C. Yu, Z. Li, X. Yan, Y. Cao, D. Zhao, Chem. Eur. J.
2006, 12, 8484–8490; h) R. Hu, Q. Zhu, W. Chen, H. Liu, B.
Yao, J. Zhan, J. Hao, C. C. Han, Polymer 2012, 53, 267–271.
a) A. Shimojima, K. Kuroda, Angew. Chem. 2003, 115, 4191;
Angew. Chem. Int. Ed. 2003, 42, 4057–4060; b) A. Shimojima,
Z. Liu, T. Ohsuna, O. Terasaki, K. Kuroda, J. Am. Chem. Soc.
2005, 127, 14108–14116; c) L. D. Carlos, V. de Zea Bermudez,
V. S. Amaral, S. C. Nunes, N. J. O. Silva, R. A. S. Ferreira, J.
Rocha, C. V. Santilli, D. Ostrovskii, Adv. Mater. 2007, 19, 341–
348; d) M. Fernandes, R. A. S. Ferreira, X. Cattoën, L. D. Car-
los, M. Wong Chi Man, V. De Zea Bermudez, J. Sol-Gel Sci.
Technol. 2012, DOI: 10.1007/s10971-012-2739-1; e) H. Muram-
atsu, R. Corriu, B. Boury, J. Am. Chem. Soc. 2003, 125, 854–
855; f) J. Alauzun, A. Mehdi, C. Réyé, R. J. P. Corriu, J. Mater.
Chem. 2005, 15, 841–843; g) E. Ruiz-Hitzky, S. Letaïef, V.
Prévot, Adv. Mater. 2002, 14, 439–443; h) D. Lin, L. Hu, H.
You, R. J. J. Williams, Eur. Polym. J. 2011, 47, 1526–1533.
(31.3 μL) was added. The following molar ratio was used: P4/
DMSO/H2O/HCl, 1:215:600:0.2. After heating the reaction mixture
at 80 °C for 2 h, a precipitate appeared, and the mixture was aged
under static conditions. After 3.5 d, the solvents were removed by
filtration. The solid product was washed successively with water,
ethanol and acetone and finally dried at 110 °C. A grey powder
was obtained. 13C NMR CP-MAS: δ = 13.5, 26.6, 31.6 (8 C), 41.6,
124.0, 130.4, 132.5, 135.9, 157.8 ppm. 29Si NMR CP-MAS: –48.4,
–57.2, –67.5 ppm (T1, T2 and T3 sites). N2 BET surface area:
25.6 m2 g–1. IR (KBr): ν = 1562, 1599 (δNH), 1636 (νCO) and 3328
˜
(νNH) cm–1.
Hybrid Silica HS5: Precursor P5 (125 mg, 0.14 mmol) was dis-
solved in THF (2.3 mL). Then distilled water (2.3 mL) was added
while stirring. A white precipitate appeared. A 1 m HCl solution
(43.3 μL) was added. The following molar ratio was used: P5/THF/
H2O/HCl, 1:200:900:0.3. After heating the reaction mixture at
80 °C for 2 h, a precipitate appeared, and the mixture was aged
under static conditions. After 3.5 d, the solvents were removed by
filtration. The white solid product was washed successively with
water, ethanol and acetone and finally dried at 110 °C. A white
powder was obtained. 13C NMR CP-MAS: δ = 11.6, 24.9 and 42.7
(CH2), 105.3 and 140.6 (Car), 157.1 (C=O) ppm. 29Si NMR
CPMAS: –57.3, –66.8 ppm (T2 and T3 sites). N2 BET surface area:
[7]
[8]
[9]
0.0 m2 g–1. IR (KBr): ν = 1557 (δNH), 1659 (νCO) and 3403 (νNH
)
˜
cm–1. Elemental analysis: found C 33.04, H 10.77, N 12.28, Si
12.54.
Hybrid Silica HS6: Precursor P6 (125 mg, 0.1 mmol) was dissolved
in DMSO (2.8 mL). Then distilled water (1.7 mL) was added while
stirring.
A white precipitate appeared. A 1 m HCl solution
(30.8 μL) was added. The following molar ratio was used: P6/
DMSO/H2O/HCl, 1:365:900:0.3. After heating the reaction mixture
at 80 °C for 2 h, a precipitate appeared, and the mixture was aged
under static conditions. After 3.5 d, the solvents were removed by
filtration. The solid product was washed successively with water,
ethanol and acetone and finally dried at 110 °C. A grey powder
was obtained. 13C NMR CP-MAS: δ = 14.6 (CH2), 18.5 (CH3),
30.9 (9 CH2), 40.6 (CH2), 58.3 (CH2O), 110.3 and 140.0 (Car), 157.6
(C=O) ppm. 29Si NMR CP-MAS: –45.7, –57.0, –65.6 ppm (T2 and
[10]
T3 sites). N2 BET surface area: 0.0 m2 g–1. IR (KBr): ν = 1574
˜
(δNH), 1645 (νCO) and 3330 (νNH) cm–1. Elemental analysis: found
C 57.53, H 8.77, N 8.80, Si 9.41.
Supporting Information (see footnote on the first page of this arti-
cle): 29Si solid-state NMR spectra of hybrid silica HS2 and HS4
(Figure S1) and 13C solid-state spectra NMR of hybrid silica HS1–
3 (Figure S2).
Acknowledgments
The authors would like to thank the Ministère de l’enseignement
supérieur et de la recherche for a PhD grant and also the Centre
National de la Recherche Scientifique (CNRS) for financial sup-
port.
[11]
[1] a) R. J. P. Corriu, J. J. E. Moreau, P. Thépot, M.
Wong Chi Man, Chem. Mater. 1992, 4, 1217–1224; b) K. J.
Shea, D. A. Loy, O. W. Webster, Chem. Mater. 1989, 1, 572–
574.
[2] C. J. Brinker, G. W. Scherer, Sol–Gel Science: the Physics and
Chemistry of Sol–Gel Processing, Academic Press, San Diego,
1990.
[3] C. Sanchez, F. Ribot, New J. Chem. 1994, 18, 1007–1047.
[4] O. J. Dautel, J. P. Lere-Porte, J. J. E. Moreau, M.
Wong Chi Man, Chem. Commun. 2003, 2662–2663.
Eur. J. Inorg. Chem. 2012, 5312–5322
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjic.org
5321