84
K. Ohta et al. / Bioorg. Med. Chem. Lett. 23 (2013) 81–84
group onto the benzoic acid moiety generated a retinoid antagonist
7. Overall, the present and previous results indicate that diphenyl-
amine-based retinoids change their mode of action in a substitu-
ent-dependent manner. The structural information obtained here
and the active compounds that we have obtained should be useful
to develop novel modulators of retinoid actions with potential clin-
ical applications.
Acknowledgment
The work described in this paper was partially supported by
Grants-in-Aid for Scientific Research from The Ministry of Educa-
tion, Science, Sports and Culture, Japan (Grant No. 22136013).
References and notes
1. (a)The Retinoids: Biology, Chemistry, and Medicine; Sporn, M. B., Roberts, A. B.,
Goodman, D. S., Eds., 2nd ed.; Raven Press: New York, 1994; (b) Mark, M.;
Ghyselinck, N. B.; Chambon, P. Ann. Rev. Pharmacol. Toxicol. 2006, 46, 451; (c)
Mark, M.; Ghyselinck, N. B.; Chambon, P. Nucl. Rec. Signal. 2009, 7, 1.
2. (a)Retinoid Therapy; Cunliffe, W. J., Miller, A. J., Eds.; MTP Press Limited:
Lancaster, 1984; (b) Lengfelder, E.; Saussele, S.; Weisser, A.; Buchner, T.;
Hehlmann, R. Crit. Rev. Oncol. Hematol. 2005, 56, 261; (c) Kagechika, H. IDrugs
2000, 3, 73.
3. (a) Mangelsdorf, D. J.; Thummel, C.; Beato, M.; Herrlich, P.; Schuetz, G.;
Umesono, K.; Blumberg, B.; Kastner, P.; Mark, M.; Chambon, P.; Evans, R. M. Cell
1995, 83, 835; (b) Kastner, P.; Mark, M.; Ghyselinck, N.; Krezel, W.; Dupe, V.;
Grondona, J. M.; Chambon, P. Development 1997, 124, 313; (c) Glass, C. K.;
Rosenfeld, M. G. Gene Dev. 2000, 14, 121.
4. (a) Germain, P.; Chambon, P.; Eichele, G.; Evans, R. M.; Lazar, M. A.; Leid, M.; De
Lera, A. R.; Lotan, R.; Manelsdorf, D. J.; Gronemeyer, H. Pharmacol. Rev. 2006, 58,
712; (b) Germain, P.; Chambon, P.; Eichele, G.; Evans, R. M.; Lazar, M. A.; Leid,
M.; De Lera, A. R.; Lotan, R.; Manelsdorf, D. J.; Gronemeyer, H. Pharmacol. Rev.
2006, 58, 760.
5. (a) Chambon, P. FASEB J. 1996, 10, 940; (b) Benoit, G. R.; Flexor, M.; Besancon,
F.; Altucci, L.; Rossin, A.; Hillion, J.; Barajthy, L.; Legres, L.; Segal-Bendirdjian;
Gronemeyer, H.; Lanotte, M. Mol. Endocrinol. 2001, 15, 1154.
Figure 6. Dose-dependent inhibition by compound 7 of HL-60 cell differentiation
induced by 3.3 Â 10À10 M Am80. 3.3 Â 10À10
M Am80 alone (control) induced
differentiation of about 60% cells.
synergitic potency is lower than benzoic derivatives 2–4. Interest-
ingly, compound 7 was again inactive as a retinoid synergist in the
presence of RAR ligand.
Compound 7 with a methyl group on the benzoic acid part did
not show either retinoid agonistic or synergistic activity. So, we
next examined the retinoid antagonistic activity of compound 7.
Compound
7 inhibited the cell differentiation induced by
3.3 Â 10À10 M Am80 which induced differentiation of about 60%
of cells (Fig. 6). The antagonistic activity of compound 7 is unex-
pected, since our previous studies (Fig. 2) showed that introduction
of a methyl group on the hydrophobic tetrahydrotetramethylnaph-
thalene ring of the diphenylamine-based retinoids markedly in-
creased the synergistic activity (RXR agonistic activity),16a,c
probably because the two benzene rings of the twisted diphenyl-
amine structure take a molecular shape similar to that of 9CRA,
in contrast to planar diphenylamine structure. Some diphenyl-
amine-type compounds that possess a long or bulky substituent
on the linking nitrogen atom or hydrophobic aromatic ring (ortho
to the amino group) exhibit retinoid antagonistic activity.15b Pre-
sumably such a substituent inhibits the proper folding of helix-
12 of the receptor that is necessary for receptor activation. In the
case of compound 7, there is no such large substituent that can in-
hibit the folding of helix-12, but the methyl group on the benzene
ring results in a bent diphenylamine structure, as in the case of the
isomeric compound 4, which shows potent synergistic activity. The
opposite activities of compounds 4 and 7 presumably results from
differences in the nature of the bending, that is, the two com-
pounds have different spatial orientations and directions of the
hydrophobic aromatic moiety and the carboxyl group. The bent
structure of 7 may not inhibit the folding of helix-12, but may in-
duce a different folding structure from the proper activated form,
resulting in receptor inactivation. Detailed mechanistic studies of
the binding of antagonist 7 to RARs and RXRs are in progress.
In conclusion, structural modifications of the benzoic acid ring
of diphenylamine-based retinoids generated retinoid agonists, syn-
ergists, and an antagonist. Introduction of an olefinic bond be-
tween the diphenylamine skeleton and the carboxyl group
afforded cinnamic acid derivatives 5 with retinoid agonistic activ-
ity, while reduction of the olefinic bond of 5 gave propionic acid
derivatives 6 with potent retinoid synergistic activity. The differ-
ences in planarity and flexibility of the substituent containing the
carboxylic acid moiety seem to be responsible for the difference in
activity between 5 and 6. Unexpectedly, introduction of a methyl
6. (a) Kagechika, H.; Kawachi, E.; Hashimoto, Y.; Himi, T.; Shudo, K. J. Med. Chem.
1988, 31, 2182; (b) Hashimoto, Y.; Kagechika, H.; Shudo, K. Biochem. Biophys.
Res. Commun. 1990, 166, 1300; (c) Shudo, K.; Kagechika, H.; Yamazaki, N.;
Igarashi, M.; Tateda, C. Biol. Pharm. Bull. 2004, 27, 1887; (d) Ishido, M.;
Kagechika, H. Drugs Today 2007, 43, 563.
7. (a) Kagechika, H. Curr. Med. Chem. 2002, 9, 591; (b) Sugitani, M.; Abe, R.;
Ikarashi, N.; Ito, K.; Muratake, H.; Shudo, K.; Sugiyama, K. Biol. Pharm. Bull.
2009, 32, 1997.
8. Kagechika, H.; Shudo, K. J. Med. Chem. 2005, 48, 5875.
9. (a) Boehm, M. F.; Zhang, L.; Badea, B. A.; White, S. K.; Mais, D. E.; Berger, E.;
Suto, C. M.; Goldman, M. E.; Heyman, R. A. J. Med. Chem. 1994, 37, 2930; (b)
Umemiya, H.; Fukasawa, H.; Ebisawa, M.; Eyrolles, L.; Kawachi, E.; Eisenmann,
G.; Gronemeyer, H.; Hashimoto, Y.; Shudo, K.; Kagechika, H. J. Med. Chem. 1997,
40, 4222; (c) Umemiya, H.; Kagechika, H.; Fukasawa, H.; Kawachi, E.; Ebisawa,
M.; Hashimoto, Y.; Eisenmann, G.; Erb, C.; Pornon, A.; Chambon, P.;
Gronemeyer, H.; Shudo, K. Biochem. Biophys. Res. Commun. 1997, 233, 121.
10. (a) Ohta, K.; Tsuji, M.; Kawachi, E.; Fukasawa, H.; Hashimoto, Y.; Shudo, K.;
Kagechika, H. Biol. Pharm. Bull. 1998, 21, 544; (b) Sato, M.; Yajima, Y.;
Kawashima, S.; Tanaka, K.; Kagechika, H. Biochem. Biophys. Res. Commun. 2001,
280, 646.
11. (a) Wolfe, J. P.; Wagaw, S.; Marcoux, J.-F.; Buckwald, S. L. Acc. Chem. Res. 1998,
31, 805; (b) Hartwig, J. F. Angew. Chem., Int. Ed. 1998, 37, 2046.
12. Ohta, K.; Chiba, Y.; Ogawa, T.; Endo, Y. Bioorg. Med. Chem. Lett. 2008, 18, 5050.
13. Humm, A.; Schneider, M. R. Arch. Pharm. 1990, 323, 83.
14. Komatsu, T.; Hirano, T.; Songkram, C.; Kawachi, E.; Kagechika, H. Bioorg. Med.
Chem. 2007, 15, 3115.
15. (a) Endo, Y.; Iijima, T.; Ohta, K.; Kagechika, H.; Kawachi, E.; Shudo, K. Chem.
Pharm. Bull. 1999, 47, 585; (b) Ohta, K.; Kawachi, E.; Fukasawa, H.; Shudo, K.;
Kagechika, H. Bioorg. Med. Chem. 2011, 19, 2501.
16. (a) Ohta, K.; Kawachi, E.; Inoue, N.; Fukasawa, H.; Hashimoto, Y.; Itai, A.;
Kagechika, H. Chem. Pharm. Bull. 2000, 48, 1504; (b) Takahashi, B.; Ohta, K.;
Kawachi, E.; Fukasawa, H.; Hashimoto, Y.; Kagechika, H. J. Med. Chem. 2002, 45,
3327; (c) Ohta, K.; Iijima, T.; Kawachi, E.; Kagechika, H.; Endo, Y. Bioorg. Med.
Chem. Lett. 2004, 14, 5913.
17. (a) Takamatsu, K.; Takano, A.; Yakushiji, N.; Morishita, K.; Matsuura, N.;
Makishima, M.; Ali, H. I.; Akaho, E.; Tai, A.; Sasaki, K.; Kakuta, H. ChemMedChem
2008, 3, 454; (b) Ohsawa, F.; Morishita, K.; Yamada, S.; Makishima, M.; Kakuta,
H. ACS Med. Chem. Lett. 2010, 1, 521.
18. (a) Collins, S. J.; Gallo, R. C.; Gallagher, R. E. Nature 1977, 270, 347; (b) Koeffler,
H. P. Blood 1983, 62, 709; (c) Collins, S. J.; Ruscetti, F. W.; Gallagher, R. E.; Gallo,
R. C. J. Exp. Med. 1979, 149, 969.