3
S.; Korth, H.-G. Groot, H.; Sustmann R. Eur. J. Org. Chem. 2001,
3119.
Peterson, J. O. J. Am. Chem. Soc. 1962, 84, 1756; (b) Lansbury,
P. T.; Peterson, J. O. J. Am. Chem. Soc. 1963, 85, 2236; (c)
Tanner, D. D.; Yang, C.-M. J. Org. Chem. 1993, 58, 1840.
5. (a) Merical, K. M., Colvin, A. E.; Mortellaro, M. A. (Sensors for
Medicine and Science) US Patent 20070014726, 2007; Chem.
Abstr. 2007, 146, 158714.; (b) Fabbrizzi, L.; Foti, F.; Patroni, S.;
Pallavicini, P.; Taglietti A. Angew. Chem. Int. Ed. 2004, 43, 5073.
6. (a) Small, B. L.; Brookhart, M.; Bennett, A. M. A. J. Am. Chem.
Soc. 1998, 120, 4049; (b) Gibson, V. C.; Spitzmesser, S. K. Chem.
Rev. 2003, 103, 283, and references therein; (c) Gibson, V. C.;
Redshaw, C.; Solan, G. A. Chem. Rev. 2007, 107, 1745, and
references therein; (d) Bianchini, C.; Giambastiani, G.; Luconi, L.;
Meli, A. Coord. Chem. Rev. 2010, 254, 431, and references
therein; (e) Yu, J.; Liu, H.; Zhang, W.; Hao, X.; Sun, W.-H. Chem.
Commun. 2011, 47, 3257.
7. (a) Gong, D.; Wang, B.; Cai, H.; Zhang, X.; Jiang, L. J.
Organomet. Chem. 2011, 696, 1584; (b) Gong, D.; Jia, X.; Wang,
B.; Wang, F.; Zhang, C.; Zhang, X.; Jiang, L.; Dong, W. Inorg.
Chim. Acta 2011, 373, 47.
8. (a) Britovsek, G. J. P.; England, J.; Spitzmesser, S. K.; White, A.
J. P.; Williams, D. J. Dalton Trans., 2005, 945; (b) Tang, J.;
Gamez, P.; Reedijk, J. Dalton Trans. 2007, 4644; (c) Shaban, S.
Y.; Ramadan, A. M.; Van Eldik, R. J. Coord. Chem. 2012, 65,
2415; (d) Jiang, Y.; Widger, L. R.; Kasper, G. D.; Siegler, M. A.;
Goldberg, D. P. J. Am. Chem. Soc. 2010, 132, 12214; (e) Badiei,
Y. M.; Siegler, M. A.; Goldberg, D. P. J. Am. Chem. Soc. 2011,
133, 1274.
9. (a) Trovitch, R. J., Lobkovsky, E.; Bill, E.; Chirik, P. J.
Organometallics 2008, 27, 1470; (b) Trovitch, R. J., Lobkovsky,
E.; Bouwkamp, M. W.; Chirik, P. J. Organometallics 2008, 27,
6264; (c) Russell, S. K.; Darmon, J. M.; Lobkovsky, E.; Chirik, P.
J. Inorg. Chem. 2010, 49, 2782; (d) Monfette, S.; Turner, Z. E.;
Semproni, S. P.; Chirik, P. J. J. Am. Chem. Soc. 2012, 134, 4561;
(e) Knijnenburg, Q.; Horton, A. D.; van der Heijden, H.; Martijn
Kooistra, T.; Hetterscheid, D. G. H.; Smits, J. M. M.; de Bruin, B.;
Budzelaar, P. H. M.; Gal, A. W. J. Mol. Catal. A: Chem. 2005,
232, 151; (f) Dayan, O.; Cetinkaya, B. J. Mol. Catal. A: Chem.
2007, 271, 134; (g) Günnaz, S.; Özdemir, N.; Dayan, S.; Dayan,
O.; Cetinkaya, B. Organometallics 2011, 30, 4165; (h) Bart, S. C.;
Lobkovsky, E.; Chirik, P. J. J. Am. Chem. Soc. 2004, 126, 13794;
(i) Aecher, A. M.; Bouwkamp, M. W.; Cortez, M.-P.; Lobkovsky,
E.; Chirik, P. J. Organometallics 2006, 25, 4269; (j) Greenhalgh,
M. D.; Thomas, S. P. J. Am. Chem. Soc. 2012, 134, 11900.
10. (a) Bouwkamp, M. W.; Bowman, A. C.; Lobkovsky, E.; Chirik, P.
J. J. Am. Chem. Soc. 2006, 128, 13340; (b) Sylvester, K. T.;
Chirik. P. J. J. Am. Chem. Soc. 2009, 131, 8772; (c) Russell, S. K.;
Lobkovsky, E.; Chirik, P. J. J. Am. Chem. Soc. 2011, 133, 8858.
11. (a) SeO2 in 1,2-dichlorobenzene: Hamon, F.; Largy, E.; Rouchon-
Dagois, M.; Monchaud, D.; Nguyen, C.-H.; Teulade-Fichou, M.-
P.; Guedin-Beaurepaire, A.; Mergny, J.-L.; Sidibe, A.; Riou, J.-F.;
Angew. Chem. Int. Ed. 2011, 50, 8745; (b) NBS: Syper, L.;
Mlochowski, J. Synthesis 1984, 747.
12. SeO2: (a) Nathaniel, W.; Kingston, R. G.; Moore, P.; Pierpoint, C.
J. Chem. Soc., Dalton Trans. 1984, 1937; (b) Hicks, R. G.;
Koivisto, B. D.; Lemaire, M. T. Org. Lett. 2004, 6, 1887; (c)
Takalo, H.; Kankare, J. J. Heterocycl. Chem. 1990, 27, 167; (d)
Bobbitt’s oxidant: Kernag, C. A.; Bobbitt, J. M.; McGrath, D.V.
Terahedron Lett., 1999, 40, 1635; (e) MnO2: Ji, S.; Klok, H.-A.;
Bruchmann, B. Macromolecules, 2011, 44, 5218.
13. (a) Pentacoordinated silane: Corriu, R. J. P.; Lanneau, G. F.;
Perrot M. Tetrahedron Lett. 1988, 29, 1271; (b) Ph2SiH2:
Gutsulyak, D.; Nikonov, G. Adv. Synth. Catal. 2012, 354, 607.
14. Kazutake, H.; Mitsui, S.; Taguchi, H. Synthesis 2003, 823.
15. De Rycke, N.; Couty, F.; David, O. R. P. Tetrahedron Lett. 2012,
53, 462.
18. (a) Lukeś, R.; Pergal, M. Coll. Czech. Chem. Commun. 1959, 24,
36; (b) Darmon, J. M.; Turner, Z. R.; Lobkovsky, E.; Chirik, P. J.
Organometallics 2012, 31, 2275.
19. Jiang, Q.; Plew, D. V.; Murtuza, S.; Zhang, X. Tetrahedron Lett.
1996, 37, 797.
20. (a) Meldrum’s acid: (5) Fallahpour, R.-A.; Constable, E. C. J.
Chem. Soc., Perkin Trans. 1 1997, 2263; (b) CH2N2: (5) Dumont,
A.; Jacques, V.; Desreux, J. F. Tetrahedron 2000, 56, 2043.
21. (a) Martin, R.; Romea, P.; Tey, C.; Urpi, F.; Vilarrasa, J. Synlett
1997, 1414; (b) Paradkar, M. V.; Godbole, H. M.; Ranade, A. A.;
Joseph, A. R. J. Chem. Res., S. 1998 , 318; (c) Cohen, F.; Tsui, V.
H.; Ly, C.; Flygare, J. A. (Genentech, Inc.) WO Patent
2006069063, 2006; Chem. Abstr. 2006, 145, 103957.; (d) Pasteris,
R. J.; Hanagan, M. A.; Shapiro, R. (E. I. Du Pont De Nemours and
Company) WO Patent 2008013622, 2008; Chem. Abstr. 2008,
148, 396134.; (e) Alvira, E.; Graneto, M. J.; Grapperhaus, M. L.;
Iyamar, K.; Maddux, T. M.; Mahoney, M. W.; Massa, M. A.;
Sample, R. K.; Schmidt, M. A.; Siedel, R. E.; Selbo, J. G.;
Tollefson, M. B.; Vonder Embse, R. A.; Wagner. G. M.;
Woodard, S. S. (Pfizer Inc.) WO Patent 2009069044, 2009; Chem.
Abstr. 2009, 151, 8494.
22. (a) Cámpora, J.; Pérez, C. M.; Rodríguez-Delgado, A.; Marcos
Naz, A.; Palma, P.; Álvarez, E. Organometallics 2007, 26, 1104;
(b) Cámpora, J.; Marcos Naz, A.; Palma, P.; Rodríguez-Delgado,
A.; Álvarez, E.; Tritto, I.; Boggioni, L. Eur. J. Inorg. Chem. 2008,
1871; (c) Pérez, C. M.; Rodríguez-Delgado, A.; Palma, P.;
Álvarez, E.; Gutiérrez-Puebla, E.; Cámpora, J. Chem. Eur. J.
2010, 13834.
23. Nikitskaya, E. S.; Usovskaya V. S.; Rubtsov M. V. Zh. Obshch.
Khim. 1958, 28, 161.
24. The choice of THF (vs. ether) was based on the greater stability of
LiAlH4 and the solubility of the substrates.
25. The solubility of LiAlH4 in THF is good (~3 mol/L); however, the
dissolution process is slow.
26. Typical procedure: LiAlH4 (7 mmol) was stirred for 16 h in THF
(30 ml) at 20 °C. After cooling to 0 °C, 2,6-pyridine
dicarboxamide (10 mmol) in THF (20 ml) was added. After ~1 h
of stirring (monitored by TLC) the mixture was hydrolyzed with 2
M aq. HCl and extracted with CH2Cl2 (5×10 ml). After
evaporation of the solvent, the residue was purified by
crystallization or flash chromatography (silica gel 40, CHCl3).
27. Muller, P.; Nury, P. Org. Lett. 1999, 1, 439.
28. Typical procedure: MeMgCl (4 ml of 2.5 M solution in THF, 10
mmol) was added at 0 °C to a solution of 2,6-pyridine
dicarboxamide (4 mmol) in THF (10 ml). After 1-3 h of stirring at
room temperature (monitored by TLC), the mixture was poured
into 1% aq. HCl and extracted by CH2Cl2 (5×10 ml). After
evaporation of the solvent, the residue was purified by
crystallization or flash chromatography (silica gel 40, CHCl3).
29. (a) Lühder, K.; Nehls, D.; Madeja, K. J. Prakt. Chem. 1983, 325,
1027; (b) Wehmschulte, R. J.; Twamley, B.; Khan, M. A. Inorg.
Chem. 2001, 40, 6004.
30. We ensured that upon addition of a solution of MeMgI in Et2O to
THF, the formation of a crystalline precipitate of MgI2(THF)x
without MeMg fragments was complete within several minutes
with pronounced heat production.
31. (a) X=Cl: Bradshaw, J. S.; Maas, G. E.; Lamb, J. D.; Izatt, R. M.;
Christensen J. J. J. Am. Chem. Soc. 1980, 102, 467; (b) X=Br:
Wang, Y.; Cooper, C. G. F.; Luisi, B. S.; Moulton, B.;
MacDonald, J. C. J. Chem. Crystallogr. 2007, 37, 299.
32. Based on analysis of the NMR spectra of the reaction mixture.
16. The use of LiAlH4 in the amide-based synthesis of aromatic
aldehydes: (a) Weygand, F.; Eberhardt G.; Linden, H.; Schäfer, F.;
Eigen, I. Angew. Chem. 1953, 65, 525; (b) Micovic, V.;
Mihailovic, M. J. Org. Chem., 1953, 18, 1190; (c) Weygand, F.;
Mitgau, R. Chem. Ber. 1955, 88, 301; (d) Eistert, B.; Schade, W.;
Selzer, H. Chem. Ber. 1964, 97, 1470; (e) Crawford, R. J.; Woo,
C. Can. J. Chem. 1965, 43, 3178; (f) Abramovitch, R. A.; Struble,
D. L.; Tetrahedron 1968, 24, 705; (g) Fabis, F.; Santos, J. S. O.;
Fouchet-Jolivet, S.; Rault, S.; Tetrahedron Lett. 2001, 42, 5183;
(h) Bokel, H. H.; Brandner, M.; Gantzert, L.; Knierieme, R.
(Merck Patent GmbH) WO Patent 2004094383, 2004; Chem.
Abstr. 2004, 141, 395424.
17. The use of LiAlH4 in the preparative chemistry of substituted
pyridines is likely restricted by the ease of the formation of 1,2-
and 1,4-dihydropyridine-aluminates: (a) Lansbury, P. T.;