P e r s o n a l A c c o u n t
T H E C H E M I C A L R E C O R D
appears to be critical for the reaction; mixing 15N-labeled DCF
1 with unlabeled methyl-substituted 19 led to scrambling of
the labeled cyano groups, as shown by 15N NMR spectroscopy.
We propose a “ring-walk” mechanism that conforms to the
mechanistic data we have gathered (Figure 14).
[3] A. D. Finke, O. Dumele, M. Zalibera, D. Confortin, P. Cias,
G. Jayamurugan, J.-P. Gisselbrecht, C. Boudon, W. B.
Schweizer, G. Gescheidt, F. Diederich, J. Am. Chem. Soc. 2012,
134, 18139–18146.
[4] C. Dahlstrand, K. Yamazaki, K. Kilså, H. Ottosson, J. Org.
Chem. 2010, 75, 8060–8068.
[5] R. B. King, M. S. Saran, J. Chem. Soc. Chem. Commun. 1974,
851–852.
[6] Y. Shvo, D. Czarkie, Y. Rahamim, D. F. Chodosh, J. Am.
Chem. Soc. 1986, 108, 7400–7402.
[7] H. Junek, G. Uray, G. Zuschnig, Liebigs Ann. Chem. 1983,
154–158.
[8] H. Junek, G. Uray, G. Zuschnig, Dyes Pigm. 1988, 9, 137–
152.
[9] A. R. Katritzky, W.-Q. Fan, D.-S. Liang, Q.-L. Li, J. Heterocycl.
Chem. 1989, 26, 1541–1545.
[10] I. Paci, J. C. Johnson, X. Chen, G. Rana, D. Popovic´, D. E.
David, A. J. Nozik, M. A. Ratner, J. Michl, J. Am. Chem. Soc.
2006, 128, 16546–16553.
[11] a) H. Möllerstedt, M. C. Piqueras, R. Crespo, H. Ottosson, J.
Am. Chem. Soc. 2004, 126, 13938–13939; b) H. Ottosson, K.
Kilså, K. Chajara, M. C. Piqueras, R. Crespo, H. Kato, D.
Muthas, Chem. Eur. J. 2007, 13, 6998–7005; c) M.
Rosenberg, C. Dahlstrand, K. Kilså, H. Ottosson, Chem. Rev.
2014, 114, 5379–5425.
6. Summary and Outlook
DCFs were largely forgotten after their discovery. However,
after their potential in advanced materials applications was
recognized, an astonishing array of reactivity and properties
associated with them was soon reported. It is clear that the
work detailed herein has only scratched the surface of DCF
chemistry. The electronic tunability of DCFs and their facile
preparation can lead to materials of functional utility, or even
scaffolds of unprecedented complexity. In addition, DCFs
display a rich reactivity profile exemplified by the CA-RE reac-
tivity of DCFs and their facile rearrangement chemistry. As we
learn more about the potential of DCFs, exciting new chem-
istries will undoubtedly follow.
Acknowledgements
[12] T. L. Andrew, J. R. Cox, T. M. Swager, Org. Lett. 2010, 12,
5302–5305.
[13] a) W. Lehnert, Tetrahedron Lett. 1970, 11, 4723–4724; b) W.
Lehnert, Tetrahedron 1972, 28, 663–666; c) W. Lehnert, Tet-
rahedron 1973, 29, 635–638.
[14] M. A. Fox, K. Campbell, G. Maier, L. H. Franz, J. Org. Chem.
1983, 48, 1762–1765.
[15] G. Jayamurugan, J.-P. Gisselbrecht, C. Boudon, F.
Schoenebeck, W. B. Schweizer, B. Bernet, F. Diederich, Chem.
Commun. 2011, 47, 4520–4522.
[16] G. Jayamurugan, O. Dumele, J.-P. Gisselbrecht, C. Boudon,
W. B. Schweizer, B. Bernet, F. Diederich, J. Am. Chem. Soc.
2013, 135, 3599–3606.
[17] T. Shoji, S. Ito, T. Okujima, N. Morita, Org. Biomol. Chem.
2012, 10, 8308–8313.
We are indebted to our colleagues and collaborators who
worked with us on these projects, in particular, Dr.
Govindasamy Jayamurugan, who discovered the synthesis of 4
and its fascinating properties, and led us into the world of DCF
chemistry; Sophie Haberland, who discovered the rearrange-
ment of 1; and Oliver Dumele, who supported our work with
DFT calculations. EPR studies on the radical anions were
performed in the laboratory of Prof. Georg Gescheidt (TU-
Graz, Austria) by Dr. Michal Zalibera, Dr. Daria Confortin,
and Dr. Pawel Cias. Electrochemistry was measured by Dr.
Jean-Paul Gisselbrecht and Prof. Corinne Boudon, Université
de Strasbourg, France. A.D.F. acknowledges the NSF-
International Research Fellowship Program (USA) for a fellow-
ship. This project was supported by the ERC Advanced Grant
No. 246637 (“OPTELOMAC”).
[18] N. Jux, K. Holczer, Y. Rubin, Angew. Chem. Int. Ed. Engl.
1996, 35, 1986–1990.
[19] Y. Tobe, K. Kubota, K. Naemura, J. Org. Chem. 1997, 62,
3430–3431.
REFERENCES
[20] a) T. Michinobu, J. C. May, J. H. Lim, C. Boudon, J.-P.
Gisselbrecht, P. Seiler, M. Gross, I. Biaggio, F. Diederich,
Chem. Commun. 2005, 737–739; b) T. Michinobu, C.
Boudon, J.-P. Gisselbrecht, P. Seiler, B. Frank, N. N. P.
Moonen, M. Gross, F. Diederich, Chem. Eur. J. 2006, 12,
1889–1905; c) M. I. Bruce, Austr. J. Chem. 2011, 64,
77–103; d) X. Tang, W. Liu, J. Wu, C.-S. Lee, J. You, P.
Wang, J. Org. Chem. 2010, 75, 7273–7278; e) M.
Morimoto, K. Murata, T. Michinobu, Chem. Commun.
2011, 47, 9819–9821.
[1] a) K. Hafner, K. H. Häfner, C. König, M. Kreuder, G. Ploss,
G. Schulz, E. Sturm, K. H. Vöpel, Angew. Chem. Int. Ed. Engl.
1963, 2, 123–134; b) E. D. Bergmann, Chem. Rev. 1968, 68,
41–84; c) R. D. Brown, F. R. Burden, J. E. Kent, J. Chem. Phys.
1968, 49, 5542; d) H. Sauter, H. Prinzbach, Angew. Chem. Int.
Ed. Engl. 1972, 11, 296–298; e) M. Neuenschwander in The
Chemistry of Double-Bonded Functional Groups (Ed.: S. Patai),
Wiley, London, 1989, pp. 1131–1268.
[2] a) M. Kivala, F. Diederich, Acc. Chem. Res. 2009, 42, 235–248;
b) S. Kato, F. Diederich, Chem. Commun. 2010, 46, 1994–
2006.
[21] Y.-L. Wu, P. D. Jarowski, W. B. Schweizer, F. Diederich, Chem.
Eur. J. 2010, 16, 202–211.
Chem. Rec. 2014, ••, ••–••
© 2014 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim