ChemComm
Communication
Cu against reductive transfer would likely improve the differential
between the stimulus-activated response vs. control. Furthermore,
compounds that respond to stimuli other than UV light for metal
release are desirable.
This work was supported in part by the U.S. National Science
Foundation (CHE-1152054). A.A.K. acknowledges the Depart-
ment of Science and Technology, Government of India, for a
BOYSCAST Fellowship (SR/BY/C-10/09) and Duke University for
providing facilities.
Notes and references
‡ Crystal data for [CuCl(3Gcage)]ꢂ2(EtOH): C25H32ClCuN5O5, Mr
=
581.55 g molꢁ1; triclinic, P1; a = 10.6787(10) Å; b = 11.3255(9) Å, c =
12.1898(12) Å; a = 113.135(9)1; b = 99.670(8)1; g = 98.548(7)1; V =
1298.4(2) Å3; Z = 2; T = 123(2) K; density (calcd) = 1.487 Mg mꢁ3; 8680
reflections measured; 5179 independent reflections (Rint = 0.0256);
R1(obs) = 0.0611, wR2(obs) = 0.1822; R1(all) = 0.0651, wR2(all) = 0.1876.
§ Abbreviations: PBS (phosphate buffered saline), BCS (bathocuproine
disulfonate), Cu3G [CuCl(3Gcage)], ROS (reactive oxygen species).
%
Fig. 4 Representative phase contrast images at 40ꢃ magnification of HeLa cells
incubated for 24 h with treatments as indicated, where UV specifies photoirra-
diation prior to incubation; (a) control, no treatment, (b) control, 90 s UV
irradiation, (c) 200 mM 3GCage ligand (no Cu) with 60 s UV irradiation, (d) 100 mM
Cu3G, (e) same as d, but with 90 s UV irradiation, (f) 50 mM Cu3G + 50 mM H2O2 + 90 s
UV irradiation prior to 18 h incubation. Images for treatment f were taken at a shorter
timepoint to show the vacuolar structures evident prior to complete cell rounding as
observed in e. Scale bar represents 10 mM.
1 T. Wang and Z. J. Guo, Curr. Med. Chem., 2006, 13, 525–537.
2 A. Gupte and R. J. Mumper, Cancer Treat. Rev., 2009, 35, 32–46.
3 F. Tisato, C. Marzano, M. Porchia, M. Pellei and C. Santini, Med. Res.
Rev., 2010, 30, 708–749.
4 P. J. Farmer, D. Brayton, C. Moore, D. Williams, B. Shahandeh, D. Cen
and F. L. Meyskens, in Medicinal Inorganic Chemistry, ed. J. L. Sessler, S. R.
Doctrow, T. J. McMurry and S. J. Lippard, American Chemical Society,
Washington, DC, 2005, vol. ACS Symposium Series 903, pp. 400–413.
5 H. H. A. Dollwet and J. R. J. Sorenson, Trace Elem. Med., 1985, 2, 80–87.
6 J. A. Duce and A. I. Bush, Prog. Neurobiol., 2010, 92, 1–18.
7 M. L. Turski and D. J. Thiele, J. Biol. Chem., 2009, 284, 717–721.
8 L. Macomber and J. A. Imlay, Proc. Natl Acad. Sci. U. S. A., 2009, 106,
8344–8349.
UV-triggered changes to the Cu3G complex, and not the free
ligand, extracellular copper, or UV irradiation alone.
While the cytotoxicity studies described above are promising,
the shift to increased cytotoxicity upon photoirradiation is not
9 J. H. Kaplan and S. Lutsenko, J. Biol. Chem., 2009, 284, 25461–25465.
10 J. T. Rubino and K. J. Franz, J. Inorg. Biochem., 2012, 107, 129–143.
dramatic, moving from an IC50B150 mM for Cu3G alone to 11 P. J. Crouch, M. S. Savva, L. W. Hung, P. S. Donnelly, A. I. Mot, S. J. Parker,
M. A. Greenough, I. Volitakis, P. A. Adlard, R. A. Cherny, C. L. Masters, A. I.
Bush, K. J. Barnham and A. R. White, J. Neurochem., 2011, 119, 220–230.
B75 mM upon UV exposure. Based on previous in vitro results
showing that photoirradiated Cu3G increases the Fenton-like
12 P. Delangle and E. Mintz, Dalton Trans., 2012, 41, 6359–6370.
production of OHꢀ in the presence of ascorbate and H2O2, we were 13 D. Z. Cen, D. Brayton, B. Shahandeh, F. L. Meyskens and P. J.
Farmer, J. Med. Chem., 2004, 47, 6914–6920.
14 M. Nagai, N. H. Vo, L. Shin Ogawa, D. Chimmanamada, T. Inoue,
interested to see if low dose H2O2 could synergistically increase
cytotoxicity of photoirradiated Cu3G. We therefore incubated HeLa
J. Chu, B. C. Beaudette-Zlatanova, R. Lu, R. K. Blackman, J. Barsoum,
cells in the presence of a non-toxic dose of 50 mM H2O2 with Cu3G
with and without photoirradiation. As shown by the dashed red
line in Fig. 3c, cells treated with a combination of Cu3G and H2O2
in the dark for 24 h remained greater than 80% viable up to a
100 mM dose. Cells that received the same treatment but also a 90 s
exposure to UV light were much more susceptible to cell death,
with an IC50 value B30 mM (solid red line Fig. 3c). Interestingly,
when the cells were imaged by bright field microscopy after 18 h,
no change in the morphology was observed for cells treated with
Cu3G and H2O2 (ESI†); however, extensive vacuole formation was
observed in the cytoplasm of cells that received the combination of
Cu3G, H2O2, and UV exposure (Fig. 4f and ESI†).
The cytoplasmic vacuolization observed in Fig. 4f is highly
reminiscent of a hallmark of cytotoxic copper delivery agents that
induce paraptotic cell death.24–26 Most anticancer compounds
induce apoptosis in cancer cells, and impairment of these pathways
is associated with drug resistance.27 The combined UV light and
H2O2 stimulation of Cu3G to induce non-apoptotic cell death
suggests that selective delivery of Cu to cancer cells might be of
particular interest for apoptosis-resistant cell lines. The current work
represents a promising step in that direction and points to several
K. Koya and Y. Wada, Free Radical Biol. Med., 2012, 52, 2142–2150.
15 A. Gupte, S. Wadhwa and R. J. Mumper, Bioconjugate Chem., 2008,
19, 1382–1388.
16 D. C. Kennedy, R. K. Lyn and J. P. Pezacki, J. Am. Chem. Soc., 2009,
131, 2444–2445.
17 K. A. Price, P. J. Crouch, I. Volitakis, B. M. Paterson, S. Lim,
P. S. Donnelly and A. R. White, Inorg. Chem., 2011, 50, 9594–9605.
18 P. S. Donnelly, J. R. Liddell, S. Lim, B. M. Paterson, M. A. Cater,
M. S. Savva, A. I. Mot, J. L. James, I. A. Trounce, A. R. White and
P. J. Crouch, Proc. Natl Acad. Sci. U. S. A., 2012, 109, 47–52.
19 K. L. Ciesienski and K. J. Franz, Angew. Chem., Int. Ed., 2011, 50, 814–824.
20 K. L. Ciesienski, K. L. Haas and K. J. Franz, Dalton Trans., 2010, 39,
9538–9546.
21 K. L. Ciesienski, K. L. Haas, M. G. Dickens, Y. T. Tesema and
K. J. Franz, J. Am. Chem. Soc., 2008, 130, 12246–12247.
22 H. W. Mbatia, H. M. Dhammika Bandara and S. C. Burdette, Chem.
Commun., 2012, 48, 5331–5333.
23 Z. Xiao, P. S. Donnelly, M. Zimmermann and A. G. Wedd, Inorg.
Chem., 2008, 47, 4338–4347.
24 S. Tardito, I. Bassanetti, C. Bignardi, L. Elviri, M. Tegoni,
`
C. Mucchino, O. Bussolati, R. Franchi-Gazzola and L. Marchio,
J. Am. Chem. Soc., 2011, 133, 6235–6242.
25 S. Tardito, O. Bussolati, M. Maffini, M. Tegoni, M. Giannetto, V. Dall’Asta,
R. Franchi-Gazzola, M. Lanfranchi, M. A. Pellinghelli, C. Mucchino,
G. Mori and L. Marchio, J. Med. Chem., 2007, 50, 1916–1924.
26 S. Tardito, C. Isella, E. Medico, L. Marchio, E. Bevilacqua,
M. Hatzoglou, O. Bussolati and R. Franchi-Gazzola, J. Biol. Chem.,
2009, 284, 24306–24319.
areas for improvement. Notably, ligands capable of better retaining 27 E. C. de Bruin and J. P. Medema, Cancer Treat. Rev., 2008, 34, 737–749.
c
2462 Chem. Commun., 2013, 49, 2460--2462
This journal is The Royal Society of Chemistry 2013