ChemComm
Communication
Table 2 Influence of substrate structurea
We thank the University of Minnesota for financial support
and the NSF for a Graduate Fellowship (K.A.V.). Computational
resources were provided by the Minnesota Supercomputing
Institute. We thank Prof. Christopher Cramer (U. Minn.) for
helpful discussions regarding the modelling experiments.
We would also like to thank Mr. Erik Goebel for helpful
suggestions, and Mr. Patrick Lang and Ms. Alison Thorsness
for early contributions to this project.
R1
R2
R3 Temp (1C)
Yieldb (%)
erc
Cmpd
Time (h)
a
b
b
c
c
d
e
e
f
g
g
h
i
Me
Br
Br
TMS
TMS
Cl
H
H
H
H
H
H
Me
Me
Me
Me
Me
Me
Me
Me
25
0
25
0
25
25
0
25
0
0
25
0
25
25
16
3
16
7
16
16
0.5
16
1
16
16
16
16
16
52
21d
52
64 : 36
69 : 31
65 : 35
80 : 20
75 : 25
65 : 35
53 : 47
50 : 50
69 : 31
77 : 23
71 : 29
64 : 36
67 : 33
63 : 37
Notes and references
1 Reviews: (a) M. Ngatimin and D. W. Lupton, Aust. J. Chem., 2010,
63, 653; (b) H. Liang and M. A. Ciufolini, Angew. Chem., Int. Ed.,
2011, 50, 11849.
2 (a) M. Fujita, Y. Yoshida, K. Miyata, A. Wakisaka and T. Sugimura,
Angew. Chem., Int. Ed., 2010, 49, 7068; (b) M. Fujita, K. Mori,
M. Shimogaki and T. Sugimura, Org. Lett., 2012, 14, 1294.
3 M. Fujita, M. Wakita and T. Sugimura, Chem. Commun., 2011,
47, 3983.
58e
79
65
H
H
Me
Me
OMe Me
H
H
H
H
H
23d
43
Me
TBS
TBS
TIPS
TMS
TBS
20d
64
Me
Me
Me
i-Pr
i-Pr
48
56
53
41
¨
´
˜
4 (a) C. Roben, J. A. Souto, Y. Gonzalez, A. Lishchynskyi and K. Muniz,
Angew. Chem., Int. Ed., 2011, 50, 9478; (b) U. Farid and T. Wirth,
Angew. Chem., Int. Ed., 2012, 51, 3462.
j
5 L. Ku¨rti, P. Herczegh, J. Visy, M. Simonyi, S. Antus and A. Pelter,
J. Chem. Soc., Perkin Trans. 1, 1999, 379.
6 S. Quideau, G. Lyvinec, M. Marguerit, K. Bathany, A. Ozanne-
Beaudenon, T. Buffeteau, D. Cavagnat and A. Chenede, Angew.
Chem., Int. Ed., 2009, 48, 4605.
7 J. K. Boppisetti and V. B. Birman, Org. Lett., 2009, 11, 1221.
8 For an asymmetric, copper-mediated oxidation, see: A. R. Germain,
D. M. Bruggemeyer, J. Zhu, C. Genet, P. O’Brien and J. A. Porco, Jr.,
J. Org. Chem., 2011, 76, 2577, and references therein.
9 T. Dohi, A. Maruyama, N. Takenaga, K. Senami, Y. Minamitsuji,
H. Fujioka, S. B. Caemmerer and Y. Kita, Angew. Chem., Int. Ed.,
2008, 47, 3787.
a
b
All reactions were performed on a 0.17 mmol scale. All yields are
c
following purification using silica gel chromatography. Determined
´
´
d
e
by chiral HPLC (see ESI). 2 : 1 MeCN–H2O was used. Repeating this
experiment using catalyst 6a instead of 8e gave the para-quinol in 57%
yield and 63 : 37 er.
10 (a) M. Uyanik, T. Yasui and K. Ishihara, Angew. Chem., Int. Ed., 2010,
49, 2175; (b) M. Uyanik, T. Yasui and K. Ishihara, Tetrahedron, 2010,
66, 5841.
11 (a) R. Tello-Aburto, K. A. Kalstabakken, K. A. Volp and A. M. Harned,
Org. Biomol. Chem., 2011, 9, 7849; (b) K. A. Volp, D. M. Johnson and
A. M. Harned, Org. Lett., 2011, 13, 4486.
Scheme 3 Asymmetric spirocyclization with catalyst 8e.
12 We have not been able to identify products arising from hydroxyla-
tion at other positions. This is in line with our work using achiral
iodine(III) reagents (i.e. PhI(OAc)2) to prepare racemic p-quinols
(see, ref. 11a). Others have made similar observations, for example:
T. Yakura, M. Omoto, Y. Yamauchi, Y. Tian and A. Ozono, Tetra-
hedron, 2010, 66, 5833; F.-X. Felpin, Tetrahedron Lett., 2007, 48, 409;
A. McKillop, L. McLaren and R. J. K. Taylor, J. Chem. Soc., Perkin
Trans. 1, 1994, 2047. The observed regioselectivity is also in accord
with the frontier orbital analysis reported by Pelter and co-workers
(see, ref. 5).
synthesis of para-quinols. The highest enantioselectivity (80 : 20 er)
was observed with substrate 4c.
In order to form the enantioenriched para-quinols, the
chiral catalyst must control the approach of a relatively small,
external nucleophile (i.e., H2O).20 The stereoselective delivery of
such a nucleophile is further complicated by the aforemen-
tioned mechanistic uncertainties associated with this reaction.
With this in mind, we wanted to evaluate the ability of catalyst
13 A. Pelter and R. S. Ward, Tetrahedron, 2001, 57, 273.
8e to control the approach of other nucleophiles. To this end, 14 Lifetimes of phenoxenium ions generated via laser-flash photolysis
have been measured and do not exceed B170 ns. See:
the spirocyclization of phenol 9 was attempted (Scheme 3).
(a) Y.-T. Wang, J. Wang, M. S. Platz and M. Novak, J. Am. Chem.
Gratifyingly, spirocycle 10 was produced with a level of stereo-
Soc., 2007, 129, 14566; (b) Y.-T. Wang, K. J. Jin, S. H. Leopold,
selectivity (70 : 30 er) that was consistent with those reported in
J. Wang, H.-L. Peng, M. S. Platz, J. Xue, D. L. Phillips, S. A. Glover
and M. Novak, J. Am. Chem. Soc., 2008, 130, 16021, and references
therein.
Table 2.21
In summary, we have shown that computational methods
can be used to gain insight into the structure of short-lived
hypervalent iodine intermediates and that the results of this
modelling can serve as a basis for the design of chiral aryl
15 L. Ku¨rti, P. Herczegh, J. Visy, M. Simonyi, S. Antus and A. Pelter,
J. Chem. Soc., Perkin Trans. 1, 1999, 379–380.
16 Y. Zhao and D. G. Truhlar, Theor. Chem. Acc., 2008, 120, 215.
17 A. Bergner, M. Dolg, W. Ku¨chle, H. Stoll and H. Preuß, Mol. Phys.,
1993, 80, 1431.
iodine catalysts. More importantly, we have shown, for the 18 P. Nguyen, E. Corpuz, T. M. Heidelbaugh, K. Chow and M. E. Garst,
J. Org. Chem., 2003, 68, 10195.
19 The oxidation of 4b was attempted using a stoichiometric amount of
first time, that chiral aryl iodide catalysts can be used for
the enantioselective synthesis of 2,5-cyclohexadienones. Our
an iodine(III) reagent derived from aryl iodide 8a. This produced
results indicate that this is a tractable problem, but new catalyst
architectures are needed in order to achieve high selectivity. We
are continuing our efforts in this area and will report our
results in due course.
quinol 5b with 62 : 38 er. See ESI for details.
20 The use of H218O results in labelled product. See ESI for details.
21 We also attempted the dearomatization of 4c and 4g using methanol
as the solvent. Unfortunately, we were unable to separate the
enantiomers using chiral HPLC.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 3001--3003 3003