Organometallics
Experimental procedures, proposed mechanism for
Communication
D. J.; Mahon, M. F. Magnesium-catalysed nitrile hydroboration.
Chem. Sci. 2016, 7, 628−641. (l) Mukherjee, D.; Shirase, S.; Spaniol,
T. P.; Mashima, K.; Okuda, J. Magnesium hydridotriphenylborate
[Mg(thf)6][HBPh3]2: a versatile hydroboration catalyst. Chem.
Commun. 2016, 52, 13155−13158. (m) Bismuto, A.; Cowley, M. J.;
Thomas, S. P. Aluminum-Catalyzed Hydroboration of Alkenes. ACS
Catal. 2018, 8, 2001−2005. (n) Eisenberger, P.; Bailey, A. M.;
Crudden, C. M. Taking the F out of FLP: Simple Lewis Acid−Base
Pairs for Mild Reductions with Neutral Boranes via Borenium Ion
Catalysis. J. Am. Chem. Soc. 2012, 134, 17384−17387.
hydroboration, crystal structure analysis, and NMR
spectra of products (PDF)
Accession Codes
CCDC 1893612 contains the supplementary crystallographic
data for this paper. These data can be obtained free of charge
Crystallographic Data Centre, 12 Union Road, Cambridge
CB2 1EZ, UK; fax: +44 1223 336033.
(4) For uncatalyzed single hydroboration of nitriles, see: (a) Yalpani,
M.; Koster, R.; Boese, R. Monomeric Aldimino-diorganoboranes and
̈
Aspects of Their Chemistry. Chem. Ber. 1993, 126, 285−288.
(b) Hawthorne, M. F. Amine boranes−X: Alkylideneamino t-
butylboranes. The hydroboration of nitriles with trimethylamine t-
butylborane. Tetrahedron 1962, 17, 117−122. (c) Diner, U. E.;
Worsley, M.; Lown, J. W.; Forsythe, J.-A. A novel asymmetric
synthesis of α-aminoacids from nitriles employing diisopinocam-
pheylborane as a chiral agent. Tetrahedron Lett. 1972, 13, 3145−3148.
(d) Itsuno, S.; Hachisuka, C.; Kitano, K.; Ito, K. Synthesis of
secondary carbinamine via n-boryl imines generated from nitriles and
alkylboranes. Tetrahedron Lett. 1992, 33, 627−630. (e) Chujo, Y.;
Tomita, I.; Saegusa, T. Hydroboration Polymerization of Dicyano
Compounds. 4. Synthesis of Stable Poly(cyclodiborazane)s from
Dialkylboranes. Macromolecules 1994, 27, 6714−6717. (f) Matsumi,
N.; Chujo, Y. Synthesis of π-Conjugated Poly(cyclodiborazane)s by
Organometallic Polycondensation. Macromolecules 2000, 33, 8146−
8148.
AUTHOR INFORMATION
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
■
ACKNOWLEDGMENTS
■
This work was supported by JSPS KAKENHI Grants
JP25410058, JP15H03782, and JP16K05714 from the Japan
Society for the Promotion of Science (JSPS). We also
acknowledge the Research and Analytical Center for Giant
Molecules, Tohoku University, for mass spectroscopic
measurements and elemental analysis.
(5) (a) Tobita, H.; Hasegawa, K.; Minglana, J. J. G.; Luh, L.-S.;
Okazaki, M.; Ogino, H. Extremely Facile Arene Exchange on a
Ruthenium(II) Complex Having a Novel Bis(silyl) Chelate Ligand
(9,9-Dimethylxanthene-4,5-diyl)bis(dimethylsilyl) (Xantsil). Organo-
metallics 1999, 18, 2058−2060. (b) Okazaki, M.; Yamahira, N.;
Minglana, J. J. G.; Komuro, T.; Ogino, H.; Tobita, H. [Ru(xantsil)-
(CO)(η6-toluene)]: Synthon for a Highly Unsaturated Ruthenium-
(II) Complex through Facile Dissociation of the Toluene Ligand
[xantsil = (9,9-dimethylxanthene-4,5-diyl)bis(dimethylsilyl)]. Organo-
metallics 2008, 27, 918−926. (c) Komuro, T.; Kitano, T.; Yamahira,
N.; Ohta, K.; Okawara, S.; Mager, N.; Okazaki, M.; Tobita, H.
Directed ortho-C−H Silylation Coupled with trans-Selective Hydro-
genation of Arylalkynes Catalyzed by Ruthenium Complexes of a
Xanthene-Based Si,O,Si-Chelate Ligand, “Xantsil”. Organometallics
2016, 35, 1209−1217. (d) Kitano, T.; Komuro, T.; Ono, R.; Tobita,
H. Tandem Hydrosilylation/o-C−H Silylation of Arylalkynes
Catalyzed by Ruthenium Bis(silyl) Aminophosphine Complexes.
Organometallics 2017, 36, 2710−2713.
REFERENCES
■
(1) Lawrence, S. A. In Amines: Synthesis, Properties and Applications;
Cambridge University Press: Cambridge, 2004.
(2) (a) Layer, R. W. The Chemistry of Imines. Chem. Rev. 1963, 63,
489−510. (b) Belowich, M. E.; Stoddart, J. F. Dynamic imine
chemistry. Chem. Soc. Rev. 2012, 41, 2003−2024.
(3) For catalytic double hydroboration of nitriles, see: (a) Khalimon,
A. Y.; Farha, P.; Kuzmina, L. G.; Nikonov, G. I. Catalytic
hydroboration by an imido-hydrido complex of Mo(IV). Chem.
Commun. 2012, 48, 455−457. (b) Khalimon, A. Y.; Farha, P.;
Nikonov, G. I. Imido−hydrido complexes of Mo(IV): catalysis and
mechanistic aspects of hydroboration reactions. Dalton Trans 2015,
44, 18945−18956. (c) Geri, J. B.; Szymczak, N. K. A Proton-
Switchable Bifunctional Ruthenium Complex That Catalyzes Nitrile
Hydroboration. J. Am. Chem. Soc. 2015, 137, 12808−12814.
(d) Kaithal, A.; Chatterjee, B.; Gunanathan, C. Ruthenium-Catalyzed
Selective Hydroboration of Nitriles and Imines. J. Org. Chem. 2016,
81, 11153−11161. (e) Espinal-Viguri, M.; Woof, C. R.; Webster, R. L.
Iron-Catalyzed Hydroboration: Unlocking Reactivity through Ligand
Modulation. Chem. - Eur. J. 2016, 22, 11605−11608. (f) Ito, M.;
Itazaki, M.; Nakazawa, H. Selective Double Hydroboration and
Dihydroborylsilylation of Organonitriles by an Iron−indium Coop-
erative Catalytic System. Inorg. Chem. 2017, 56, 13709−13714.
(g) Ibrahim, A. D.; Entsminger, S. W.; Fout, A. R. Insights into a
Chemoselective Cobalt Catalyst for the Hydroboration of Alkenes
and Nitriles. ACS Catal. 2017, 7, 3730−3734. (h) Ben-Daat, H.;
Rock, C. L.; Flores, M.; Groy, T. L.; Bowman, A. C.; Trovitch, R. J.
Hydroboration of alkynes and nitriles using an α-diimine cobalt
hydride catalyst. Chem. Commun. 2017, 53, 7333−7336. (i) Naka-
mura, G.; Nakajima, Y.; Matsumoto, K.; Srinivas, V.; Shimada, S.
Nitrile hydroboration reactions catalysed by simple nickel salts,
bis(acetylacetonato)nickel(II) and its derivatives. Catal. Sci. Technol.
2017, 7, 3196−3199. (j) Huang, Z.; Wang, S.; Zhu, X.; Yuan, Q.; Wei,
Y.; Zhou, S.; Mu, X. Well-Defined Amidate-Functionalized N-
Heterocyclic Carbene-Supported Rare-Earth Metal Complexes as
Catalysts for Efficient Hydroboration of Unactivated Imines and
Nitriles. Inorg. Chem. 2018, 57, 15069−15078. (k) Weetman, C.;
(6) Guram, A. S.; Rennels, R. A.; Buchwald, S. L. A Simple Catalytic
Method for the Conversion of Aryl Bromides to Arylamines. Angew.
Chem., Int. Ed. Engl. 1995, 34, 1348−1350.
(7) Related palladium-catalyzed C(aryl)−N coupling reactions of N-
silylated amines and imines with bromoarenes via cleavage of their
Si−N bonds have been reported. See: (a) Barluenga, J.; Aznar, F.;
Valdes, C. N-Trialkylsilylimines as Coupling Partners for Pd-
Catalyzed C−N Bond-Forming Reactions: One-Step Synthesis of
Imines and Azadienes from Aryl and Alkenyl Bromides. Angew. Chem.,
Int. Ed. 2004, 43, 343−345. (b) Smith, C. J.; Early, T. R.; Holmes, A.
B.; Shute, R. E. Palladium catalysed cross-coupling reactions of
silylamines. Chem. Commun. 2004, 53, 1976−1977.
(8) During the initial stage of the catalytic single-hydroboration
reaction of PhCN with 9-BBN, adduct 3b·9-BBN was observed in
1
the reaction mixture by H and 11B NMR spectroscopy.
(9) We also confirmed that C−N coupling reactions of isolated
double and single hydroboration products 2a and 3a with
bromobenzene and KOtBu catalyzed by Pd(dba)2/CyJohnPhos gave
̈
Anker, M. D.; Arrowsmith, M.; Hill, M. S.; Kociok-Kohn, G.; Liptrot,
D
Organometallics XXXX, XXX, XXX−XXX